fine-tuning-with-trl: Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: fine-tuning-with-trl description: Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers. version: 1.0.0 author: Orchestra Research license: MIT tags: [Post-Training, TRL, Reinforcement Learning, Fine-Tuning, SFT, DPO, PPO, GRPO, RLHF, Preference Alignment, HuggingFace] dependencies: [trl, transformers, datasets, peft, accelerate, torch]
TRL - Transformer Reinforcement Learning
Quick start
TRL provides post-training methods for aligning language models with human preferences.
Installation:
pip install trl transformers datasets peft accelerate
Supervised Fine-Tuning (instruction tuning):
from trl import SFTTrainer
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset, # Prompt-completion pairs
)
trainer.train()
DPO (align with preferences):
from trl import DPOTrainer, DPOConfig
config = DPOConfig(output_dir="model-dpo", beta=0.1)
trainer = DPOTrainer(
model=model,
args=config,
train_dataset=preference_dataset, # chosen/rejected pairs
processing_class=tokenizer
)
trainer.train()
Common workflows
Workflow 1: Full RLHF pipeline (SFT → Reward Model → PPO)
Complete pipeline from base model to human-aligned model.
Copy this checklist:
RLHF Training:
- [ ] Step 1: Supervised fine-tuning (SFT)
- [ ] Step 2: Train reward model
- [ ] Step 3: PPO reinforcement learning
- [ ] Step 4: Evaluate aligned model
Step 1: Supervised fine-tuning
Train base model on instruction-following data:
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
# Load model
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B")
# Load instruction dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
# Configure training
training_args = SFTConfig(
output_dir="Qwen2.5-0.5B-SFT",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=2e-5,
logging_steps=10,
save_strategy="epoch"
)
# Train
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer
)
trainer.train()
trainer.save_model()
Step 2: Train reward model
Train model to predict human preferences:
from transformers import AutoModelForSequenceClassification
from trl import RewardTrainer, RewardConfig
# Load SFT model as base
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen2.5-0.5B-SFT",
num_labels=1 # Single reward score
)
tokenizer = AutoTokenizer.from_pretrained("Qwen2.5-0.5B-SFT")
# Load preference data (chosen/rejected pairs)
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Configure training
training_args = RewardConfig(
output_dir="Qwen2.5-0.5B-Reward",
per_device_train_batch_size=2,
num_train_epochs=1,
learning_rate=1e-5
)
# Train reward model
trainer = RewardTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=dataset
)
trainer.train()
trainer.save_model()
Step 3: PPO reinforcement learning
Optimize policy using reward model:
python -m trl.scripts.ppo \
--model_name_or_path Qwen2.5-0.5B-SFT \
--reward_model_path Qwen2.5-0.5B-Reward \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--output_dir Qwen2.5-0.5B-PPO \
--learning_rate 3e-6 \
--per_device_train_batch_size 64 \
--total_episodes 10000
Step 4: Evaluate
from transformers import pipeline
# Load aligned model
generator = pipeline("text-generation", model="Qwen2.5-0.5B-PPO")
# Test
prompt = "Explain quantum computing to a 10-year-old"
output = generator(prompt, max_length=200)[0]["generated_text"]
print(output)
Workflow 2: Simple preference alignment with DPO
Align model with preferences without reward model.
Copy this checklist:
DPO Training:
- [ ] Step 1: Prepare preference dataset
- [ ] Step 2: Configure DPO
- [ ] Step 3: Train with DPOTrainer
- [ ] Step 4: Evaluate alignment
Step 1: Prepare preference dataset
Dataset format:
{
"prompt": "What is the capital of France?",
"chosen": "The capital of France is Paris.",
"rejected": "I don't know."
}
Load dataset:
from datasets import load_dataset
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Or load your own
# dataset = load_dataset("json", data_files="preferences.json")
Step 2: Configure DPO
from trl import DPOConfig
config = DPOConfig(
output_dir="Qwen2.5-0.5B-DPO",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=5e-7,
beta=0.1, # KL penalty strength
max_prompt_length=512,
max_length=1024,
logging_steps=10
)
Step 3: Train with DPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
trainer = DPOTrainer(
model=model,
args=config,
train_dataset=dataset,
processing_class=tokenizer
)
trainer.train()
trainer.save_model()
CLI alternative:
trl dpo \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name argilla/Capybara-Preferences \
--output_dir Qwen2.5-0.5B-DPO \
--per_device_train_batch_size 4 \
--learning_rate 5e-7 \
--beta 0.1
Workflow 3: Memory-efficient online RL with GRPO
Train with reinforcement learning using minimal memory.
Copy this checklist:
GRPO Training:
- [ ] Step 1: Define reward function
- [ ] Step 2: Configure GRPO
- [ ] Step 3: Train with GRPOTrainer
Step 1: Define reward function
def reward_function(completions, **kwargs):
"""
Compute rewards for completions.
Args:
completions: List of generated texts
Returns:
List of reward scores (floats)
"""
rewards = []
for completion in completions:
# Example: reward based on length and unique words
score = len(completion.split()) # Favor longer responses
score += len(set(completion.lower().split())) # Reward unique words
rewards.append(score)
return rewards
Or use a reward model:
from transformers import pipeline
reward_model = pipeline("text-classification", model="reward-model-path")
def reward_from_model(completions, prompts, **kwargs):
# Combine prompt + completion
full_texts = [p + c for p, c in zip(prompts, completions)]
# Get reward scores
results = reward_model(full_texts)
return [r["score"] for r in results]
Step 2: Configure GRPO
from trl import GRPOConfig
config = GRPOConfig(
output_dir="Qwen2-GRPO",
per_device_train_batch_size=4,
num_train_epochs=1,
learning_rate=1e-5,
num_generations=4, # Generate 4 completions per prompt
max_new_tokens=128
)
Step 3: Train with GRPOTrainer
from datasets import load_dataset
from trl import GRPOTrainer
# Load prompt-only dataset
dataset = load_dataset("trl-lib/tldr", split="train")
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_function, # Your reward function
args=config,
train_dataset=dataset
)
trainer.train()
CLI:
trl grpo \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/tldr \
--output_dir Qwen2-GRPO \
--num_generations 4
When to use vs alternatives
Use TRL when:
- Need to align model with human preferences
- Have preference data (chosen/rejected pairs)
- Want to use reinforcement learning (PPO, GRPO)
- Need reward model training
- Doing RLHF (full pipeline)
Method selection:
- SFT: Have prompt-completion pairs, want basic instruction following
- DPO: Have preferences, want simple alignment (no reward model needed)
- PPO: Have reward model, need maximum control over RL
- GRPO: Memory-constrained, want online RL
- Reward Model: Building RLHF pipeline, need to score generations
Use alternatives instead:
- HuggingFace Trainer: Basic fine-tuning without RL
- Axolotl: YAML-based training configuration
- LitGPT: Educational, minimal fine-tuning
- Unsloth: Fast LoRA training
Common issues
Issue: OOM during DPO training
Reduce batch size and sequence length:
config = DPOConfig(
per_device_train_batch_size=1, # Reduce from 4
max_length=512, # Reduce from 1024
gradient_accumulation_steps=8 # Maintain effective batch
)
Or use gradient checkpointing:
model.gradient_checkpointing_enable()
Issue: Poor alignment quality
Tune beta parameter:
# Higher beta = more conservative (stays closer to reference)
config = DPOConfig(beta=0.5) # Default 0.1
# Lower beta = more aggressive alignment
config = DPOConfig(beta=0.01)
Issue: Reward model not learning
Check loss type and learning rate:
config = RewardConfig(
learning_rate=1e-5, # Try different LR
num_train_epochs=3 # Train longer
)
Ensure preference dataset has clear winners:
# Verify dataset
print(dataset[0])
# Should have clear chosen > rejected
Issue: PPO training unstable
Adjust KL coefficient:
config = PPOConfig(
kl_coef=0.1, # Increase from 0.05
cliprange=0.1 # Reduce from 0.2
)
Advanced topics
SFT training guide: See references/sft-training.md for dataset formats, chat templates, packing strategies, and multi-GPU training.
DPO variants: See references/dpo-variants.md for IPO, cDPO, RPO, and other DPO loss functions with recommended hyperparameters.
Reward modeling: See references/reward-modeling.md for outcome vs process rewards, Bradley-Terry loss, and reward model evaluation.
Online RL methods: See references/online-rl.md for PPO, GRPO, RLOO, and OnlineDPO with detailed configurations.
Hardware requirements
- GPU: NVIDIA (CUDA required)
- VRAM: Depends on model and method
- SFT 7B: 16GB (with LoRA)
- DPO 7B: 24GB (stores reference model)
- PPO 7B: 40GB (policy + reward model)
- GRPO 7B: 24GB (more memory efficient)
- Multi-GPU: Supported via
accelerate - Mixed precision: BF16 recommended (A100/H100)
Memory optimization:
- Use LoRA/QLoRA for all methods
- Enable gradient checkpointing
- Use smaller batch sizes with gradient accumulation
Resources
- Docs: https://huggingface.co/docs/trl/
- GitHub: https://github.com/huggingface/trl
- Papers:
- "Training language models to follow instructions with human feedback" (InstructGPT, 2022)
- "Direct Preference Optimization: Your Language Model is Secretly a Reward Model" (DPO, 2023)
- "Group Relative Policy Optimization" (GRPO, 2024)
- Examples: https://github.com/huggingface/trl/tree/main/examples/scripts
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
name: ray-data
