segment-anything-model: Foundation model for image segmentation with zero-shot transfer. Use when you need to segment any object in images using points, boxes, or masks as prompts, or automatically generate all object masks in an image.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: segment-anything-model description: Foundation model for image segmentation with zero-shot transfer. Use when you need to segment any object in images using points, boxes, or masks as prompts, or automatically generate all object masks in an image. version: 1.0.0 author: Orchestra Research license: MIT tags: [Multimodal, Image Segmentation, Computer Vision, SAM, Zero-Shot] dependencies: [segment-anything, transformers>=4.30.0, torch>=1.7.0]
Segment Anything Model (SAM)
Comprehensive guide to using Meta AI's Segment Anything Model for zero-shot image segmentation.
When to use SAM
Use SAM when:
- Need to segment any object in images without task-specific training
- Building interactive annotation tools with point/box prompts
- Generating training data for other vision models
- Need zero-shot transfer to new image domains
- Building object detection/segmentation pipelines
- Processing medical, satellite, or domain-specific images
Key features:
- Zero-shot segmentation: Works on any image domain without fine-tuning
- Flexible prompts: Points, bounding boxes, or previous masks
- Automatic segmentation: Generate all object masks automatically
- High quality: Trained on 1.1 billion masks from 11 million images
- Multiple model sizes: ViT-B (fastest), ViT-L, ViT-H (most accurate)
- ONNX export: Deploy in browsers and edge devices
Use alternatives instead:
- YOLO/Detectron2: For real-time object detection with classes
- Mask2Former: For semantic/panoptic segmentation with categories
- GroundingDINO + SAM: For text-prompted segmentation
- SAM 2: For video segmentation tasks
Quick start
Installation
# From GitHub
pip install git+https://github.com/facebookresearch/segment-anything.git
# Optional dependencies
pip install opencv-python pycocotools matplotlib
# Or use HuggingFace transformers
pip install transformers
Download checkpoints
# ViT-H (largest, most accurate) - 2.4GB
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
# ViT-L (medium) - 1.2GB
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
# ViT-B (smallest, fastest) - 375MB
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
Basic usage with SamPredictor
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
# Load model
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
sam.to(device="cuda")
# Create predictor
predictor = SamPredictor(sam)
# Set image (computes embeddings once)
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
# Predict with point prompts
input_point = np.array([[500, 375]]) # (x, y) coordinates
input_label = np.array([1]) # 1 = foreground, 0 = background
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True # Returns 3 mask options
)
# Select best mask
best_mask = masks[np.argmax(scores)]
HuggingFace Transformers
import torch
from PIL import Image
from transformers import SamModel, SamProcessor
# Load model and processor
model = SamModel.from_pretrained("facebook/sam-vit-huge")
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
model.to("cuda")
# Process image with point prompt
image = Image.open("image.jpg")
input_points = [[[450, 600]]] # Batch of points
inputs = processor(image, input_points=input_points, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Generate masks
with torch.no_grad():
outputs = model(**inputs)
# Post-process masks to original size
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)
Core concepts
Model architecture
SAM Architecture:
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Image Encoder │────▶│ Prompt Encoder │────▶│ Mask Decoder │
│ (ViT) │ │ (Points/Boxes) │ │ (Transformer) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
Image Embeddings Prompt Embeddings Masks + IoU
(computed once) (per prompt) predictions
Model variants
| Model | Checkpoint | Size | Speed | Accuracy |
|---|---|---|---|---|
| ViT-H | vit_h | 2.4 GB | Slowest | Best |
| ViT-L | vit_l | 1.2 GB | Medium | Good |
| ViT-B | vit_b | 375 MB | Fastest | Good |
Prompt types
| Prompt | Description | Use Case |
|---|---|---|
| Point (foreground) | Click on object | Single object selection |
| Point (background) | Click outside object | Exclude regions |
| Bounding box | Rectangle around object | Larger objects |
| Previous mask | Low-res mask input | Iterative refinement |
Interactive segmentation
Point prompts
# Single foreground point
input_point = np.array([[500, 375]])
input_label = np.array([1])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True
)
# Multiple points (foreground + background)
input_points = np.array([[500, 375], [600, 400], [450, 300]])
input_labels = np.array([1, 1, 0]) # 2 foreground, 1 background
masks, scores, logits = predictor.predict(
point_coords=input_points,
point_labels=input_labels,
multimask_output=False # Single mask when prompts are clear
)
Box prompts
# Bounding box [x1, y1, x2, y2]
input_box = np.array([425, 600, 700, 875])
masks, scores, logits = predictor.predict(
box=input_box,
multimask_output=False
)
Combined prompts
# Box + points for precise control
masks, scores, logits = predictor.predict(
point_coords=np.array([[500, 375]]),
point_labels=np.array([1]),
box=np.array([400, 300, 700, 600]),
multimask_output=False
)
Iterative refinement
# Initial prediction
masks, scores, logits = predictor.predict(
point_coords=np.array([[500, 375]]),
point_labels=np.array([1]),
multimask_output=True
)
# Refine with additional point using previous mask
masks, scores, logits = predictor.predict(
point_coords=np.array([[500, 375], [550, 400]]),
point_labels=np.array([1, 0]), # Add background point
mask_input=logits[np.argmax(scores)][None, :, :], # Use best mask
multimask_output=False
)
Automatic mask generation
Basic automatic segmentation
from segment_anything import SamAutomaticMaskGenerator
# Create generator
mask_generator = SamAutomaticMaskGenerator(sam)
# Generate all masks
masks = mask_generator.generate(image)
# Each mask contains:
# - segmentation: binary mask
# - bbox: [x, y, w, h]
# - area: pixel count
# - predicted_iou: quality score
# - stability_score: robustness score
# - point_coords: generating point
Customized generation
mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=32, # Grid density (more = more masks)
pred_iou_thresh=0.88, # Quality threshold
stability_score_thresh=0.95, # Stability threshold
crop_n_layers=1, # Multi-scale crops
crop_n_points_downscale_factor=2,
min_mask_region_area=100, # Remove tiny masks
)
masks = mask_generator.generate(image)
Filtering masks
# Sort by area (largest first)
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
# Filter by predicted IoU
high_quality = [m for m in masks if m['predicted_iou'] > 0.9]
# Filter by stability score
stable_masks = [m for m in masks if m['stability_score'] > 0.95]
Batched inference
Multiple images
# Process multiple images efficiently
images = [cv2.imread(f"image_{i}.jpg") for i in range(10)]
all_masks = []
for image in images:
predictor.set_image(image)
masks, _, _ = predictor.predict(
point_coords=np.array([[500, 375]]),
point_labels=np.array([1]),
multimask_output=True
)
all_masks.append(masks)
Multiple prompts per image
# Process multiple prompts efficiently (one image encoding)
predictor.set_image(image)
# Batch of point prompts
points = [
np.array([[100, 100]]),
np.array([[200, 200]]),
np.array([[300, 300]])
]
all_masks = []
for point in points:
masks, scores, _ = predictor.predict(
point_coords=point,
point_labels=np.array([1]),
multimask_output=True
)
all_masks.append(masks[np.argmax(scores)])
ONNX deployment
Export model
python scripts/export_onnx_model.py \
--checkpoint sam_vit_h_4b8939.pth \
--model-type vit_h \
--output sam_onnx.onnx \
--return-single-mask
Use ONNX model
import onnxruntime
# Load ONNX model
ort_session = onnxruntime.InferenceSession("sam_onnx.onnx")
# Run inference (image embeddings computed separately)
masks = ort_session.run(
None,
{
"image_embeddings": image_embeddings,
"point_coords": point_coords,
"point_labels": point_labels,
"mask_input": np.zeros((1, 1, 256, 256), dtype=np.float32),
"has_mask_input": np.array([0], dtype=np.float32),
"orig_im_size": np.array([h, w], dtype=np.float32)
}
)
Common workflows
Workflow 1: Annotation tool
import cv2
# Load model
predictor = SamPredictor(sam)
predictor.set_image(image)
def on_click(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# Foreground point
masks, scores, _ = predictor.predict(
point_coords=np.array([[x, y]]),
point_labels=np.array([1]),
multimask_output=True
)
# Display best mask
display_mask(masks[np.argmax(scores)])
Workflow 2: Object extraction
def extract_object(image, point):
"""Extract object at point with transparent background."""
predictor.set_image(image)
masks, scores, _ = predictor.predict(
point_coords=np.array([point]),
point_labels=np.array([1]),
multimask_output=True
)
best_mask = masks[np.argmax(scores)]
# Create RGBA output
rgba = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
rgba[:, :, :3] = image
rgba[:, :, 3] = best_mask * 255
return rgba
Workflow 3: Medical image segmentation
# Process medical images (grayscale to RGB)
medical_image = cv2.imread("scan.png", cv2.IMREAD_GRAYSCALE)
rgb_image = cv2.cvtColor(medical_image, cv2.COLOR_GRAY2RGB)
predictor.set_image(rgb_image)
# Segment region of interest
masks, scores, _ = predictor.predict(
box=np.array([x1, y1, x2, y2]), # ROI bounding box
multimask_output=True
)
Output format
Mask data structure
# SamAutomaticMaskGenerator output
{
"segmentation": np.ndarray, # H×W binary mask
"bbox": [x, y, w, h], # Bounding box
"area": int, # Pixel count
"predicted_iou": float, # 0-1 quality score
"stability_score": float, # 0-1 robustness score
"crop_box": [x, y, w, h], # Generation crop region
"point_coords": [[x, y]], # Input point
}
COCO RLE format
from pycocotools import mask as mask_utils
# Encode mask to RLE
rle = mask_utils.encode(np.asfortranarray(mask.astype(np.uint8)))
rle["counts"] = rle["counts"].decode("utf-8")
# Decode RLE to mask
decoded_mask = mask_utils.decode(rle)
Performance optimization
GPU memory
# Use smaller model for limited VRAM
sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth")
# Process images in batches
# Clear CUDA cache between large batches
torch.cuda.empty_cache()
Speed optimization
# Use half precision
sam = sam.half()
# Reduce points for automatic generation
mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=16, # Default is 32
)
# Use ONNX for deployment
# Export with --return-single-mask for faster inference
Common issues
| Issue | Solution |
|---|---|
| Out of memory | Use ViT-B model, reduce image size |
| Slow inference | Use ViT-B, reduce points_per_side |
| Poor mask quality | Try different prompts, use box + points |
| Edge artifacts | Use stability_score filtering |
| Small objects missed | Increase points_per_side |
References
- Advanced Usage - Batching, fine-tuning, integration
- Troubleshooting - Common issues and solutions
Resources
- GitHub: https://github.com/facebookresearch/segment-anything
- Paper: https://arxiv.org/abs/2304.02643
- Demo: https://segment-anything.com
- SAM 2 (Video): https://github.com/facebookresearch/segment-anything-2
- HuggingFace: https://huggingface.co/facebook/sam-vit-huge
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
name: ray-data
