Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: pinecone description: Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure. version: 1.0.0 author: Orchestra Research license: MIT tags: [RAG, Pinecone, Vector Database, Managed Service, Serverless, Hybrid Search, Production, Auto-Scaling, Low Latency, Recommendations] dependencies: [pinecone-client]
Pinecone - Managed Vector Database
The vector database for production AI applications.
When to use Pinecone
Use when:
- Need managed, serverless vector database
- Production RAG applications
- Auto-scaling required
- Low latency critical (<100ms)
- Don't want to manage infrastructure
- Need hybrid search (dense + sparse vectors)
Metrics:
- Fully managed SaaS
- Auto-scales to billions of vectors
- p95 latency <100ms
- 99.9% uptime SLA
Use alternatives instead:
- Chroma: Self-hosted, open-source
- FAISS: Offline, pure similarity search
- Weaviate: Self-hosted with more features
Quick start
Installation
pip install pinecone-client
Basic usage
from pinecone import Pinecone, ServerlessSpec
# Initialize
pc = Pinecone(api_key="your-api-key")
# Create index
pc.create_index(
name="my-index",
dimension=1536, # Must match embedding dimension
metric="cosine", # or "euclidean", "dotproduct"
spec=ServerlessSpec(cloud="aws", region="us-east-1")
)
# Connect to index
index = pc.Index("my-index")
# Upsert vectors
index.upsert(vectors=[
{"id": "vec1", "values": [0.1, 0.2, ...], "metadata": {"category": "A"}},
{"id": "vec2", "values": [0.3, 0.4, ...], "metadata": {"category": "B"}}
])
# Query
results = index.query(
vector=[0.1, 0.2, ...],
top_k=5,
include_metadata=True
)
print(results["matches"])
Core operations
Create index
# Serverless (recommended)
pc.create_index(
name="my-index",
dimension=1536,
metric="cosine",
spec=ServerlessSpec(
cloud="aws", # or "gcp", "azure"
region="us-east-1"
)
)
# Pod-based (for consistent performance)
from pinecone import PodSpec
pc.create_index(
name="my-index",
dimension=1536,
metric="cosine",
spec=PodSpec(
environment="us-east1-gcp",
pod_type="p1.x1"
)
)
Upsert vectors
# Single upsert
index.upsert(vectors=[
{
"id": "doc1",
"values": [0.1, 0.2, ...], # 1536 dimensions
"metadata": {
"text": "Document content",
"category": "tutorial",
"timestamp": "2025-01-01"
}
}
])
# Batch upsert (recommended)
vectors = [
{"id": f"vec{i}", "values": embedding, "metadata": metadata}
for i, (embedding, metadata) in enumerate(zip(embeddings, metadatas))
]
index.upsert(vectors=vectors, batch_size=100)
Query vectors
# Basic query
results = index.query(
vector=[0.1, 0.2, ...],
top_k=10,
include_metadata=True,
include_values=False
)
# With metadata filtering
results = index.query(
vector=[0.1, 0.2, ...],
top_k=5,
filter={"category": {"$eq": "tutorial"}}
)
# Namespace query
results = index.query(
vector=[0.1, 0.2, ...],
top_k=5,
namespace="production"
)
# Access results
for match in results["matches"]:
print(f"ID: {match['id']}")
print(f"Score: {match['score']}")
print(f"Metadata: {match['metadata']}")
Metadata filtering
# Exact match
filter = {"category": "tutorial"}
# Comparison
filter = {"price": {"$gte": 100}} # $gt, $gte, $lt, $lte, $ne
# Logical operators
filter = {
"$and": [
{"category": "tutorial"},
{"difficulty": {"$lte": 3}}
]
} # Also: $or
# In operator
filter = {"tags": {"$in": ["python", "ml"]}}
Namespaces
# Partition data by namespace
index.upsert(
vectors=[{"id": "vec1", "values": [...]}],
namespace="user-123"
)
# Query specific namespace
results = index.query(
vector=[...],
namespace="user-123",
top_k=5
)
# List namespaces
stats = index.describe_index_stats()
print(stats['namespaces'])
Hybrid search (dense + sparse)
# Upsert with sparse vectors
index.upsert(vectors=[
{
"id": "doc1",
"values": [0.1, 0.2, ...], # Dense vector
"sparse_values": {
"indices": [10, 45, 123], # Token IDs
"values": [0.5, 0.3, 0.8] # TF-IDF scores
},
"metadata": {"text": "..."}
}
])
# Hybrid query
results = index.query(
vector=[0.1, 0.2, ...],
sparse_vector={
"indices": [10, 45],
"values": [0.5, 0.3]
},
top_k=5,
alpha=0.5 # 0=sparse, 1=dense, 0.5=hybrid
)
LangChain integration
from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAIEmbeddings
# Create vector store
vectorstore = PineconeVectorStore.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(),
index_name="my-index"
)
# Query
results = vectorstore.similarity_search("query", k=5)
# With metadata filter
results = vectorstore.similarity_search(
"query",
k=5,
filter={"category": "tutorial"}
)
# As retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
LlamaIndex integration
from llama_index.vector_stores.pinecone import PineconeVectorStore
# Connect to Pinecone
pc = Pinecone(api_key="your-key")
pinecone_index = pc.Index("my-index")
# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
# Use in LlamaIndex
from llama_index.core import StorageContext, VectorStoreIndex
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
Index management
# List indices
indexes = pc.list_indexes()
# Describe index
index_info = pc.describe_index("my-index")
print(index_info)
# Get index stats
stats = index.describe_index_stats()
print(f"Total vectors: {stats['total_vector_count']}")
print(f"Namespaces: {stats['namespaces']}")
# Delete index
pc.delete_index("my-index")
Delete vectors
# Delete by ID
index.delete(ids=["vec1", "vec2"])
# Delete by filter
index.delete(filter={"category": "old"})
# Delete all in namespace
index.delete(delete_all=True, namespace="test")
# Delete entire index
index.delete(delete_all=True)
Best practices
- Use serverless - Auto-scaling, cost-effective
- Batch upserts - More efficient (100-200 per batch)
- Add metadata - Enable filtering
- Use namespaces - Isolate data by user/tenant
- Monitor usage - Check Pinecone dashboard
- Optimize filters - Index frequently filtered fields
- Test with free tier - 1 index, 100K vectors free
- Use hybrid search - Better quality
- Set appropriate dimensions - Match embedding model
- Regular backups - Export important data
Performance
| Operation | Latency | Notes |
|---|---|---|
| Upsert | ~50-100ms | Per batch |
| Query (p50) | ~50ms | Depends on index size |
| Query (p95) | ~100ms | SLA target |
| Metadata filter | ~+10-20ms | Additional overhead |
Pricing (as of 2025)
Serverless:
- $0.096 per million read units
- $0.06 per million write units
- $0.06 per GB storage/month
Free tier:
- 1 serverless index
- 100K vectors (1536 dimensions)
- Great for prototyping
Resources
- Website: https://www.pinecone.io
- Docs: https://docs.pinecone.io
- Console: https://app.pinecone.io
- Pricing: https://www.pinecone.io/pricing
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
name: ray-data
