Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5× cost reduction vs dense models), implementing sparse architectures like Mixtral 8x7B or DeepSeek-V3, or scaling model capacity without proportional compute increase. Covers MoE architectures, routing mechanisms, load balancing, expert parallelism, and inference optimization.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: moe-training description: Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5× cost reduction vs dense models), implementing sparse architectures like Mixtral 8x7B or DeepSeek-V3, or scaling model capacity without proportional compute increase. Covers MoE architectures, routing mechanisms, load balancing, expert parallelism, and inference optimization. version: 1.0.0 author: Orchestra Research license: MIT tags: [Emerging Techniques, MoE, Mixture Of Experts, Sparse Models, DeepSpeed, Expert Parallelism, Mixtral, DeepSeek, Routing, Load Balancing, Efficient Training] dependencies: [deepspeed, transformers, torch, accelerate]
MoE Training: Mixture of Experts
When to Use This Skill
Use MoE Training when you need to:
- Train larger models with limited compute (5× cost reduction vs dense models)
- Scale model capacity without proportional compute increase
- Achieve better performance per compute budget than dense models
- Specialize experts for different domains/tasks/languages
- Reduce inference latency with sparse activation (only 13B/47B params active in Mixtral)
- Implement SOTA models like Mixtral 8x7B, DeepSeek-V3, Switch Transformers
Notable MoE Models: Mixtral 8x7B (Mistral AI), DeepSeek-V3, Switch Transformers (Google), GLaM (Google), NLLB-MoE (Meta)
Installation
# DeepSpeed with MoE support
pip install deepspeed>=0.6.0
# Megatron-DeepSpeed for large-scale training
git clone https://github.com/microsoft/Megatron-DeepSpeed
cd Megatron-DeepSpeed
pip install -r requirements.txt
# Alternative: HuggingFace Transformers
pip install transformers accelerate
Quick Start
Basic MoE Architecture
import torch
import torch.nn as nn
class MoELayer(nn.Module):
"""Sparse Mixture of Experts layer."""
def __init__(self, hidden_size, num_experts=8, top_k=2):
super().__init__()
self.num_experts = num_experts
self.top_k = top_k
# Expert networks (FFN)
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(hidden_size, 4 * hidden_size),
nn.GELU(),
nn.Linear(4 * hidden_size, hidden_size)
)
for _ in range(num_experts)
])
# Gating network (router)
self.gate = nn.Linear(hidden_size, num_experts)
def forward(self, x):
# x shape: (batch_size, seq_len, hidden_size)
batch_size, seq_len, hidden_size = x.shape
# Flatten for routing
x_flat = x.view(-1, hidden_size) # (batch_size * seq_len, hidden_size)
# Compute gate scores
gate_logits = self.gate(x_flat) # (batch_size * seq_len, num_experts)
# Top-k routing
gate_scores = torch.softmax(gate_logits, dim=-1)
topk_scores, topk_indices = torch.topk(gate_scores, self.top_k, dim=-1)
# Normalize top-k scores
topk_scores = topk_scores / topk_scores.sum(dim=-1, keepdim=True)
# Dispatch and combine expert outputs
output = torch.zeros_like(x_flat)
for i in range(self.top_k):
expert_idx = topk_indices[:, i]
expert_scores = topk_scores[:, i].unsqueeze(-1)
# Route tokens to experts
for expert_id in range(self.num_experts):
mask = (expert_idx == expert_id)
if mask.any():
expert_input = x_flat[mask]
expert_output = self.experts[expert_id](expert_input)
output[mask] += expert_scores[mask] * expert_output
# Reshape back
return output.view(batch_size, seq_len, hidden_size)
DeepSpeed MoE Training
# Training script with MoE
deepspeed pretrain_gpt_moe.py \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--micro-batch-size 4 \
--global-batch-size 256 \
--train-iters 500000 \
--lr 0.0001 \
--min-lr 0.00001 \
--lr-decay-style cosine \
--num-experts 128 \
--moe-expert-parallel-size 4 \
--moe-loss-coeff 0.01 \
--moe-train-capacity-factor 1.25 \
--moe-eval-capacity-factor 2.0 \
--fp16 \
--deepspeed_config ds_config.json
Core Concepts
1. MoE Architecture
Key Components:
- Experts: Multiple specialized FFN networks (typically 8-128)
- Router/Gate: Learned network that selects which experts to use
- Top-k Routing: Activate only k experts per token (k=1 or k=2)
- Load Balancing: Ensure even expert utilization
Input Token
↓
Router (Gate Network)
↓
Top-k Expert Selection (e.g., 2 out of 8)
↓
Expert 1 (weight: 0.6) + Expert 5 (weight: 0.4)
↓
Weighted Combination
↓
Output
2. Routing Mechanisms
Top-1 Routing (Switch Transformer):
# Simplest routing: one expert per token
gate_logits = router(x) # (batch, seq_len, num_experts)
expert_idx = torch.argmax(gate_logits, dim=-1) # Hard routing
Top-2 Routing (Mixtral):
# Top-2: two experts per token
gate_scores = torch.softmax(router(x), dim=-1)
top2_scores, top2_indices = torch.topk(gate_scores, k=2, dim=-1)
# Normalize scores
top2_scores = top2_scores / top2_scores.sum(dim=-1, keepdim=True)
# Combine expert outputs
output = (top2_scores[:, :, 0:1] * expert_outputs[top2_indices[:, :, 0]] +
top2_scores[:, :, 1:2] * expert_outputs[top2_indices[:, :, 1]])
Expert Choice Routing:
# Experts choose top-k tokens (instead of tokens choosing experts)
# Guarantees perfect load balancing
expert_scores = router(x).transpose(-1, -2) # (batch, num_experts, seq_len)
topk_tokens = torch.topk(expert_scores, k=capacity_per_expert, dim=-1)
3. Load Balancing
Auxiliary Loss:
def load_balancing_loss(gate_logits, expert_indices, num_experts):
"""Encourage uniform expert usage."""
# Fraction of tokens routed to each expert
expert_counts = torch.bincount(expert_indices.flatten(), minlength=num_experts)
expert_fraction = expert_counts.float() / expert_indices.numel()
# Gate probability for each expert (average across tokens)
gate_probs = torch.softmax(gate_logits, dim=-1).mean(dim=0)
# Auxiliary loss: encourage alignment
aux_loss = num_experts * (expert_fraction * gate_probs).sum()
return aux_loss
# Add to main loss
total_loss = language_model_loss + 0.01 * load_balancing_loss(...)
Router Z-Loss (Stability):
def router_z_loss(logits):
"""Encourage router to have lower entropy (more decisive)."""
z_loss = torch.logsumexp(logits, dim=-1).pow(2).mean()
return z_loss
total_loss = lm_loss + 0.01 * aux_loss + 0.001 * router_z_loss(gate_logits)
4. Expert Parallelism
# DeepSpeed configuration
{
"train_batch_size": 256,
"fp16": {"enabled": true},
"moe": {
"enabled": true,
"num_experts": 128,
"expert_parallel_size": 8, # Distribute 128 experts across 8 GPUs
"capacity_factor": 1.25, # Expert capacity = tokens_per_batch * capacity_factor / num_experts
"drop_tokens": true, # Drop tokens exceeding capacity
"use_residual": false
}
}
Training Configuration
DeepSpeed MoE Config
{
"train_batch_size": 256,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.0001,
"betas": [0.9, 0.999],
"eps": 1e-8
}
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"initial_scale_power": 16
},
"moe": {
"enabled": true,
"num_experts": 128,
"expert_parallel_size": 8,
"moe_loss_coeff": 0.01,
"train_capacity_factor": 1.25,
"eval_capacity_factor": 2.0,
"min_capacity": 4,
"drop_tokens": true,
"use_residual": false,
"use_tutel": false
},
"zero_optimization": {
"stage": 1
}
}
Training Script
#!/bin/bash
# Mixtral-style MoE training
deepspeed --num_gpus 8 pretrain_moe.py \
--model-parallel-size 1 \
--num-layers 32 \
--hidden-size 4096 \
--num-attention-heads 32 \
--seq-length 2048 \
--max-position-embeddings 4096 \
--micro-batch-size 2 \
--global-batch-size 256 \
--train-iters 500000 \
--save-interval 5000 \
--eval-interval 1000 \
--eval-iters 100 \
--lr 0.0001 \
--min-lr 0.00001 \
--lr-decay-style cosine \
--lr-warmup-iters 2000 \
--clip-grad 1.0 \
--weight-decay 0.1 \
--num-experts 8 \
--moe-expert-parallel-size 4 \
--moe-loss-coeff 0.01 \
--moe-train-capacity-factor 1.25 \
--moe-eval-capacity-factor 2.0 \
--disable-moe-token-dropping \
--fp16 \
--deepspeed \
--deepspeed_config ds_config_moe.json \
--data-path /path/to/data \
--vocab-file /path/to/vocab.json \
--merge-file /path/to/merges.txt
Advanced Patterns
Mixtral 8x7B Architecture
class MixtralMoEBlock(nn.Module):
"""Mixtral-style MoE block with 8 experts, top-2 routing."""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts # 8
self.top_k = config.num_experts_per_tok # 2
# 8 expert FFNs
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(self.hidden_dim, self.ffn_dim, bias=False),
nn.SiLU(),
nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
)
for _ in range(self.num_experts)
])
# Router
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
def forward(self, hidden_states):
batch_size, sequence_length, hidden_dim = hidden_states.shape
# Flatten
hidden_states = hidden_states.view(-1, hidden_dim)
# Router logits
router_logits = self.gate(hidden_states) # (batch * seq_len, num_experts)
# Softmax and top-2
routing_weights = torch.softmax(router_logits, dim=1)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# Normalize routing weights
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# Initialize output
final_hidden_states = torch.zeros_like(hidden_states)
# Route to experts
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(selected_experts == expert_idx)
if idx.shape[0] == 0:
continue
# Current expert tokens
current_hidden_states = hidden_states[idx]
# Expert forward
current_hidden_states = expert_layer(current_hidden_states)
# Weighted by routing scores
current_hidden_states *= routing_weights[idx, top_x, None]
# Accumulate
final_hidden_states.index_add_(0, idx, current_hidden_states)
# Reshape
return final_hidden_states.view(batch_size, sequence_length, hidden_dim)
PR-MoE (Pyramid-Residual-MoE)
# DeepSpeed PR-MoE: 3x better parameter efficiency
deepspeed pretrain_gpt_moe.py \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--num-experts "[128, 64, 32, 16]" \
--mlp-type residual \
--moe-expert-parallel-size 4 \
--moe-loss-coeff 0.01 \
--fp16
Best Practices
1. Expert Count Selection
# Rule of thumb: More experts = more capacity, but diminishing returns
# Typical configurations:
# - Small models (1B-7B): 8-16 experts
# - Medium models (7B-30B): 8-64 experts
# - Large models (30B+): 64-256 experts
# Example: Mixtral 8x7B
# Total params: 47B (8 experts × 7B each)
# Active params: 13B (2 experts × 7B, top-2 routing)
# Efficiency: 47B capacity with 13B compute
2. Capacity Factor Tuning
# Capacity = (tokens_per_batch / num_experts) * capacity_factor
# Training: Lower capacity (faster, drops some tokens)
train_capacity_factor = 1.25 # 25% buffer
# Evaluation: Higher capacity (no dropping)
eval_capacity_factor = 2.0 # 100% buffer
# Formula:
expert_capacity = int((seq_len * batch_size / num_experts) * capacity_factor)
3. Learning Rate Guidelines
# MoE models need lower LR than dense models
# - Dense model: lr = 6e-4
# - MoE model: lr = 1e-4 (3-6× lower)
# Also extend decay schedule
dense_lr_decay_iters = 300000
moe_lr_decay_iters = 500000 # 1.5-2× longer
4. Loss Coefficient Tuning
# Start with standard values
moe_loss_coeff = 0.01 # Auxiliary loss (load balancing)
router_z_loss_coeff = 0.001 # Router entropy (stability)
# If load imbalance persists, increase aux loss
if max_expert_usage / min_expert_usage > 2.0:
moe_loss_coeff = 0.1 # Stronger load balancing
# If training unstable, increase z-loss
if grad_norm > 10.0:
router_z_loss_coeff = 0.01
5. Avoid Common Pitfalls
# ❌ Bad: Using same LR as dense model
optimizer = Adam(model.parameters(), lr=6e-4)
# ✅ Good: Lower LR for MoE
optimizer = Adam([
{'params': model.non_moe_params, 'lr': 6e-4},
{'params': model.moe_params, 'lr': 1e-4}
])
# ❌ Bad: No load balancing
loss = lm_loss
# ✅ Good: Add auxiliary loss
loss = lm_loss + 0.01 * aux_loss + 0.001 * z_loss
# ❌ Bad: Too many experts for small dataset
num_experts = 128 # Overfitting risk
# ✅ Good: Match experts to data diversity
num_experts = 8 # Better for small datasets
Inference Optimization
Sparse Inference
# Only activate top-k experts (huge memory savings)
@torch.no_grad()
def moe_inference(x, model, top_k=2):
"""Sparse MoE inference: only load k experts."""
# Router
gate_logits = model.gate(x)
topk_scores, topk_indices = torch.topk(
torch.softmax(gate_logits, dim=-1),
k=top_k,
dim=-1
)
# Load and run only top-k experts
output = torch.zeros_like(x)
for i in range(top_k):
expert_idx = topk_indices[:, i]
# Load expert from disk/offload if needed
expert = model.load_expert(expert_idx)
output += topk_scores[:, i:i+1] * expert(x)
return output
Resources
- DeepSpeed MoE Tutorial: https://www.deepspeed.ai/tutorials/mixture-of-experts-nlg/
- Mixtral Paper: https://arxiv.org/abs/2401.04088
- Switch Transformers: https://arxiv.org/abs/2101.03961
- HuggingFace MoE Guide: https://huggingface.co/blog/moe
- NVIDIA MoE Blog: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
See Also
references/architectures.md- MoE model architectures (Mixtral, Switch, DeepSeek-V3)references/training.md- Advanced training techniques and optimizationreferences/inference.md- Production deployment and serving patterns
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
name: ray-data
