Compress large language models using knowledge distillation from teacher to student models. Use when deploying smaller models with retained performance, transferring GPT-4 capabilities to open-source models, or reducing inference costs. Covers temperature scaling, soft targets, reverse KLD, logit distillation, and MiniLLM training strategies.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: knowledge-distillation description: Compress large language models using knowledge distillation from teacher to student models. Use when deploying smaller models with retained performance, transferring GPT-4 capabilities to open-source models, or reducing inference costs. Covers temperature scaling, soft targets, reverse KLD, logit distillation, and MiniLLM training strategies. version: 1.0.0 author: Orchestra Research license: MIT tags: [Emerging Techniques, Knowledge Distillation, Model Compression, Teacher-Student, MiniLLM, Reverse KLD, Soft Targets, Temperature Scaling, Logit Distillation, Model Transfer] dependencies: [transformers, torch, datasets]
Knowledge Distillation: Compressing LLMs
When to Use This Skill
Use Knowledge Distillation when you need to:
- Compress models from 70B → 7B while retaining 90%+ performance
- Transfer capabilities from proprietary models (GPT-4) to open-source (LLaMA, Mistral)
- Reduce inference costs by deploying smaller student models
- Create specialized models by distilling domain-specific knowledge
- Improve small models using synthetic data from large teachers
Key Techniques: Temperature scaling, soft targets, reverse KLD (MiniLLM), logit distillation, response distillation
Papers: Hinton et al. 2015 (arXiv 1503.02531), MiniLLM (arXiv 2306.08543), KD Survey (arXiv 2402.13116)
Installation
# Standard transformers
pip install transformers datasets accelerate
# For training
pip install torch deepspeed wandb
# Optional: MiniLLM implementation
git clone https://github.com/microsoft/LMOps
cd LMOps/minillm
pip install -e .
Quick Start
Basic Knowledge Distillation
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
# 1. Load teacher (large) and student (small) models
teacher = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-70b-hf", # Large teacher
torch_dtype=torch.float16,
device_map="auto"
)
student = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", # Small student
torch_dtype=torch.float16,
device_map="cuda:0"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-hf")
# 2. Define distillation loss
def distillation_loss(student_logits, teacher_logits, labels, temperature=2.0, alpha=0.5):
"""
Combine hard loss (cross-entropy) with soft loss (KL divergence).
Args:
temperature: Softens probability distributions (higher = softer)
alpha: Weight for distillation loss (1-alpha for hard loss)
"""
# Hard loss: Standard cross-entropy with true labels
hard_loss = F.cross_entropy(student_logits.view(-1, student_logits.size(-1)), labels.view(-1))
# Soft loss: KL divergence between student and teacher
soft_targets = F.softmax(teacher_logits / temperature, dim=-1)
soft_student = F.log_softmax(student_logits / temperature, dim=-1)
soft_loss = F.kl_div(soft_student, soft_targets, reduction='batchmean') * (temperature ** 2)
# Combined loss
return alpha * soft_loss + (1 - alpha) * hard_loss
# 3. Training loop
for batch in dataloader:
# Teacher forward (no grad)
with torch.no_grad():
teacher_outputs = teacher(**batch)
teacher_logits = teacher_outputs.logits
# Student forward
student_outputs = student(**batch)
student_logits = student_outputs.logits
# Compute distillation loss
loss = distillation_loss(
student_logits,
teacher_logits,
batch['labels'],
temperature=2.0,
alpha=0.7 # 70% soft, 30% hard
)
# Backward and optimize
loss.backward()
optimizer.step()
optimizer.zero_grad()
MiniLLM (Reverse KLD)
Source: arXiv 2306.08543 (2024)
Innovation: Use reverse KLD instead of forward KLD for better generative model distillation.
def reverse_kl_loss(student_logits, teacher_logits, temperature=1.0):
"""
Reverse KL divergence: KL(Teacher || Student)
Better for generative models than forward KL.
"""
# Teacher distribution (target)
p_teacher = F.softmax(teacher_logits / temperature, dim=-1)
# Student distribution (model)
log_p_student = F.log_softmax(student_logits / temperature, dim=-1)
# Reverse KL: Sum over teacher, student learns to cover teacher's modes
reverse_kl = -(p_teacher * log_p_student).sum(dim=-1).mean()
return reverse_kl * (temperature ** 2)
# Training with MiniLLM
for batch in dataloader:
with torch.no_grad():
teacher_logits = teacher(**batch).logits
student_logits = student(**batch).logits
# Reverse KLD (better for generation)
loss = reverse_kl_loss(student_logits, teacher_logits, temperature=1.0)
loss.backward()
optimizer.step()
Why reverse KL?
- Forward KL (standard): Student learns to match teacher's mean
- Reverse KL (MiniLLM): Student learns to cover all teacher's modes
- Better for diverse text generation
Response Distillation
# Generate synthetic data from teacher, train student to imitate
# 1. Generate synthetic responses from teacher
prompts = ["Explain AI:", "What is ML?", "Define NLP:"]
teacher_responses = []
for prompt in prompts:
inputs = tokenizer(prompt, return_tensors='pt').to(teacher.device)
outputs = teacher.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
teacher_responses.append(response)
# 2. Train student on teacher's responses (standard fine-tuning)
train_dataset = [
{"text": f"{prompt}\n{response}"}
for prompt, response in zip(prompts, teacher_responses)
]
# 3. Fine-tune student
trainer = Trainer(
model=student,
args=TrainingArguments(output_dir="./student", num_train_epochs=3, learning_rate=2e-5),
train_dataset=train_dataset,
)
trainer.train()
Core Concepts
1. Temperature Scaling
Purpose: Soften probability distributions to expose teacher's uncertainty.
# Low temperature (T=1): Sharp distribution
logits = [3.0, 2.0, 1.0]
probs_T1 = softmax(logits / 1.0) # [0.67, 0.24, 0.09]
# High temperature (T=4): Soft distribution
probs_T4 = softmax(logits / 4.0) # [0.42, 0.34, 0.24]
# Higher T reveals more information about relative rankings
Rule: Use T=2-5 for distillation (2 is common default).
2. Loss Function Components
# Total loss = alpha * soft_loss + (1 - alpha) * hard_loss
# Soft loss: Learn from teacher's knowledge
soft_loss = KL(student || teacher)
# Hard loss: Learn from ground truth labels
hard_loss = CrossEntropy(student_output, true_labels)
# Typical values:
alpha = 0.5 # Balanced
alpha = 0.7 # More emphasis on teacher
alpha = 0.3 # More emphasis on labels
3. Forward vs Reverse KLD
# Forward KL: KL(Student || Teacher)
# - Student matches teacher's average behavior
# - Mode-seeking: Student focuses on teacher's highest probability modes
# - Good for classification
# Reverse KL: KL(Teacher || Student)
# - Student covers all of teacher's behaviors
# - Mode-covering: Student learns diverse behaviors
# - Good for generation (MiniLLM)
Training Strategies
Strategy 1: Logit Distillation
# Train student to match teacher's logits directly
def logit_distillation_trainer(student, teacher, dataloader, temperature=2.0):
optimizer = torch.optim.AdamW(student.parameters(), lr=2e-5)
for epoch in range(3):
for batch in dataloader:
# Get logits
with torch.no_grad():
teacher_logits = teacher(**batch).logits
student_logits = student(**batch).logits
# MSE on logits (alternative to KLD)
loss = F.mse_loss(student_logits, teacher_logits)
# Or use KLD
# loss = F.kl_div(
# F.log_softmax(student_logits/temperature, dim=-1),
# F.softmax(teacher_logits/temperature, dim=-1),
# reduction='batchmean'
# ) * (temperature ** 2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return student
Strategy 2: Two-Stage Distillation
# Stage 1: Distill from teacher
student = distill(teacher, student, epochs=5)
# Stage 2: Fine-tune on task-specific data
student = fine_tune(student, task_data, epochs=3)
# Results in better task performance than single-stage
Strategy 3: Multi-Teacher Distillation
# Learn from multiple expert teachers
def multi_teacher_distillation(student, teachers, batch):
"""Distill from ensemble of teachers."""
teacher_logits_list = []
# Get logits from all teachers
with torch.no_grad():
for teacher in teachers:
logits = teacher(**batch).logits
teacher_logits_list.append(logits)
# Average teacher predictions
avg_teacher_logits = torch.stack(teacher_logits_list).mean(dim=0)
# Student learns from ensemble
student_logits = student(**batch).logits
loss = F.kl_div(
F.log_softmax(student_logits, dim=-1),
F.softmax(avg_teacher_logits, dim=-1),
reduction='batchmean'
)
return loss
Production Deployment
Complete Training Script
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
def train_distilled_model(
teacher_name="meta-llama/Llama-2-70b-hf",
student_name="meta-llama/Llama-2-7b-hf",
output_dir="./distilled-llama-7b",
temperature=2.0,
alpha=0.7,
):
# Load models
teacher = AutoModelForCausalLM.from_pretrained(teacher_name, torch_dtype=torch.float16, device_map="auto")
student = AutoModelForCausalLM.from_pretrained(student_name, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(teacher_name)
# Custom trainer with distillation
class DistillationTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
# Student forward
outputs_student = model(**inputs)
student_logits = outputs_student.logits
# Teacher forward (no grad)
with torch.no_grad():
outputs_teacher = teacher(**inputs)
teacher_logits = outputs_teacher.logits
# Distillation loss
soft_targets = F.softmax(teacher_logits / temperature, dim=-1)
soft_student = F.log_softmax(student_logits / temperature, dim=-1)
soft_loss = F.kl_div(soft_student, soft_targets, reduction='batchmean') * (temperature ** 2)
# Hard loss
hard_loss = outputs_student.loss
# Combined
loss = alpha * soft_loss + (1 - alpha) * hard_loss
return (loss, outputs_student) if return_outputs else loss
# Training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
learning_rate=2e-5,
warmup_steps=500,
logging_steps=100,
save_steps=1000,
bf16=True,
gradient_checkpointing=True,
)
# Train
trainer = DistillationTrainer(
model=student,
args=training_args,
train_dataset=train_dataset,
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
student.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
# Usage
train_distilled_model(
teacher_name="meta-llama/Llama-2-70b-hf",
student_name="meta-llama/Llama-2-7b-hf",
temperature=2.0,
alpha=0.7
)
Best Practices
1. Hyperparameter Selection
# Temperature
T = 1.0 # Sharp (less knowledge transfer)
T = 2.0 # Standard (good balance)
T = 5.0 # Soft (more knowledge transfer)
# Alpha (weight)
alpha = 0.5 # Balanced
alpha = 0.7 # Emphasize teacher knowledge
alpha = 0.9 # Strong distillation
# Rule: Higher T + higher alpha = stronger distillation
2. Model Size Ratio
# Good ratios (teacher/student)
70B / 7B = 10× # Excellent
13B / 1B = 13× # Good
7B / 1B = 7× # Acceptable
# Avoid too large gap
70B / 1B = 70× # Too large, ineffective
3. Data Quality
# Best: Use teacher-generated data + real data
train_data = {
"teacher_generated": 70%, # Diverse, high-quality
"real_data": 30% # Ground truth
}
# Avoid: Only real data (doesn't utilize teacher fully)
Evaluation
from transformers import pipeline
# Compare student vs teacher
teacher_pipe = pipeline("text-generation", model=teacher)
student_pipe = pipeline("text-generation", model=student)
prompts = ["Explain quantum computing:", "What is AI?"]
for prompt in prompts:
teacher_out = teacher_pipe(prompt, max_new_tokens=100)
student_out = student_pipe(prompt, max_new_tokens=100)
print(f"Prompt: {prompt}")
print(f"Teacher: {teacher_out[0]['generated_text']}")
print(f"Student: {student_out[0]['generated_text']}")
print(f"Match quality: {calculate_similarity(teacher_out, student_out):.2f}")
Resources
- Hinton et al. 2015 (Foundational): https://arxiv.org/abs/1503.02531
- MiniLLM (Reverse KLD): https://arxiv.org/abs/2306.08543
- KD Survey for LLMs (2024): https://arxiv.org/abs/2402.13116
- MiniLLM GitHub: https://github.com/microsoft/LMOps/tree/main/minillm
More by zechenzhangAGI
View alllambda-labs-gpu-cloud: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
hqq-quantization: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
name: ray-data
