Master Unity ECS (Entity Component System) with DOTS, Jobs, and Burst for high-performance game development. Use when building data-oriented games, optimizing performance, or working with large entity counts.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: unity-ecs-patterns description: Master Unity ECS (Entity Component System) with DOTS, Jobs, and Burst for high-performance game development. Use when building data-oriented games, optimizing performance, or working with large entity counts.
Unity ECS Patterns
Production patterns for Unity's Data-Oriented Technology Stack (DOTS) including Entity Component System, Job System, and Burst Compiler.
When to Use This Skill
- Building high-performance Unity games
- Managing thousands of entities efficiently
- Implementing data-oriented game systems
- Optimizing CPU-bound game logic
- Converting OOP game code to ECS
- Using Jobs and Burst for parallelization
Core Concepts
1. ECS vs OOP
| Aspect | Traditional OOP | ECS/DOTS |
|---|---|---|
| Data layout | Object-oriented | Data-oriented |
| Memory | Scattered | Contiguous |
| Processing | Per-object | Batched |
| Scaling | Poor with count | Linear scaling |
| Best for | Complex behaviors | Mass simulation |
2. DOTS Components
Entity: Lightweight ID (no data)
Component: Pure data (no behavior)
System: Logic that processes components
World: Container for entities
Archetype: Unique combination of components
Chunk: Memory block for same-archetype entities
Patterns
Pattern 1: Basic ECS Setup
using Unity.Entities;
using Unity.Mathematics;
using Unity.Transforms;
using Unity.Burst;
using Unity.Collections;
// Component: Pure data, no methods
public struct Speed : IComponentData
{
public float Value;
}
public struct Health : IComponentData
{
public float Current;
public float Max;
}
public struct Target : IComponentData
{
public Entity Value;
}
// Tag component (zero-size marker)
public struct EnemyTag : IComponentData { }
public struct PlayerTag : IComponentData { }
// Buffer component (variable-size array)
[InternalBufferCapacity(8)]
public struct InventoryItem : IBufferElementData
{
public int ItemId;
public int Quantity;
}
// Shared component (grouped entities)
public struct TeamId : ISharedComponentData
{
public int Value;
}
Pattern 2: Systems with ISystem (Recommended)
using Unity.Entities;
using Unity.Transforms;
using Unity.Mathematics;
using Unity.Burst;
// ISystem: Unmanaged, Burst-compatible, highest performance
[BurstCompile]
public partial struct MovementSystem : ISystem
{
[BurstCompile]
public void OnCreate(ref SystemState state)
{
// Require components before system runs
state.RequireForUpdate<Speed>();
}
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
float deltaTime = SystemAPI.Time.DeltaTime;
// Simple foreach - auto-generates job
foreach (var (transform, speed) in
SystemAPI.Query<RefRW<LocalTransform>, RefRO<Speed>>())
{
transform.ValueRW.Position +=
new float3(0, 0, speed.ValueRO.Value * deltaTime);
}
}
[BurstCompile]
public void OnDestroy(ref SystemState state) { }
}
// With explicit job for more control
[BurstCompile]
public partial struct MovementJobSystem : ISystem
{
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
var job = new MoveJob
{
DeltaTime = SystemAPI.Time.DeltaTime
};
state.Dependency = job.ScheduleParallel(state.Dependency);
}
}
[BurstCompile]
public partial struct MoveJob : IJobEntity
{
public float DeltaTime;
void Execute(ref LocalTransform transform, in Speed speed)
{
transform.Position += new float3(0, 0, speed.Value * DeltaTime);
}
}
Pattern 3: Entity Queries
[BurstCompile]
public partial struct QueryExamplesSystem : ISystem
{
private EntityQuery _enemyQuery;
public void OnCreate(ref SystemState state)
{
// Build query manually for complex cases
_enemyQuery = new EntityQueryBuilder(Allocator.Temp)
.WithAll<EnemyTag, Health, LocalTransform>()
.WithNone<Dead>()
.WithOptions(EntityQueryOptions.FilterWriteGroup)
.Build(ref state);
}
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
// SystemAPI.Query - simplest approach
foreach (var (health, entity) in
SystemAPI.Query<RefRW<Health>>()
.WithAll<EnemyTag>()
.WithEntityAccess())
{
if (health.ValueRO.Current <= 0)
{
// Mark for destruction
SystemAPI.GetSingleton<EndSimulationEntityCommandBufferSystem.Singleton>()
.CreateCommandBuffer(state.WorldUnmanaged)
.DestroyEntity(entity);
}
}
// Get count
int enemyCount = _enemyQuery.CalculateEntityCount();
// Get all entities
var enemies = _enemyQuery.ToEntityArray(Allocator.Temp);
// Get component arrays
var healths = _enemyQuery.ToComponentDataArray<Health>(Allocator.Temp);
}
}
Pattern 4: Entity Command Buffers (Structural Changes)
// Structural changes (create/destroy/add/remove) require command buffers
[BurstCompile]
[UpdateInGroup(typeof(SimulationSystemGroup))]
public partial struct SpawnSystem : ISystem
{
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
var ecbSingleton = SystemAPI.GetSingleton<BeginSimulationEntityCommandBufferSystem.Singleton>();
var ecb = ecbSingleton.CreateCommandBuffer(state.WorldUnmanaged);
foreach (var (spawner, transform) in
SystemAPI.Query<RefRW<Spawner>, RefRO<LocalTransform>>())
{
spawner.ValueRW.Timer -= SystemAPI.Time.DeltaTime;
if (spawner.ValueRO.Timer <= 0)
{
spawner.ValueRW.Timer = spawner.ValueRO.Interval;
// Create entity (deferred until sync point)
Entity newEntity = ecb.Instantiate(spawner.ValueRO.Prefab);
// Set component values
ecb.SetComponent(newEntity, new LocalTransform
{
Position = transform.ValueRO.Position,
Rotation = quaternion.identity,
Scale = 1f
});
// Add component
ecb.AddComponent(newEntity, new Speed { Value = 5f });
}
}
}
}
// Parallel ECB usage
[BurstCompile]
public partial struct ParallelSpawnJob : IJobEntity
{
public EntityCommandBuffer.ParallelWriter ECB;
void Execute([EntityIndexInQuery] int index, in Spawner spawner)
{
Entity e = ECB.Instantiate(index, spawner.Prefab);
ECB.AddComponent(index, e, new Speed { Value = 5f });
}
}
Pattern 5: Aspect (Grouping Components)
using Unity.Entities;
using Unity.Transforms;
using Unity.Mathematics;
// Aspect: Groups related components for cleaner code
public readonly partial struct CharacterAspect : IAspect
{
public readonly Entity Entity;
private readonly RefRW<LocalTransform> _transform;
private readonly RefRO<Speed> _speed;
private readonly RefRW<Health> _health;
// Optional component
[Optional]
private readonly RefRO<Shield> _shield;
// Buffer
private readonly DynamicBuffer<InventoryItem> _inventory;
public float3 Position
{
get => _transform.ValueRO.Position;
set => _transform.ValueRW.Position = value;
}
public float CurrentHealth => _health.ValueRO.Current;
public float MaxHealth => _health.ValueRO.Max;
public float MoveSpeed => _speed.ValueRO.Value;
public bool HasShield => _shield.IsValid;
public float ShieldAmount => HasShield ? _shield.ValueRO.Amount : 0f;
public void TakeDamage(float amount)
{
float remaining = amount;
if (HasShield && _shield.ValueRO.Amount > 0)
{
// Shield absorbs damage first
remaining = math.max(0, amount - _shield.ValueRO.Amount);
}
_health.ValueRW.Current = math.max(0, _health.ValueRO.Current - remaining);
}
public void Move(float3 direction, float deltaTime)
{
_transform.ValueRW.Position += direction * _speed.ValueRO.Value * deltaTime;
}
public void AddItem(int itemId, int quantity)
{
_inventory.Add(new InventoryItem { ItemId = itemId, Quantity = quantity });
}
}
// Using aspect in system
[BurstCompile]
public partial struct CharacterSystem : ISystem
{
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
float dt = SystemAPI.Time.DeltaTime;
foreach (var character in SystemAPI.Query<CharacterAspect>())
{
character.Move(new float3(1, 0, 0), dt);
if (character.CurrentHealth < character.MaxHealth * 0.5f)
{
// Low health logic
}
}
}
}
Pattern 6: Singleton Components
// Singleton: Exactly one entity with this component
public struct GameConfig : IComponentData
{
public float DifficultyMultiplier;
public int MaxEnemies;
public float SpawnRate;
}
public struct GameState : IComponentData
{
public int Score;
public int Wave;
public float TimeRemaining;
}
// Create singleton on world creation
public partial struct GameInitSystem : ISystem
{
public void OnCreate(ref SystemState state)
{
var entity = state.EntityManager.CreateEntity();
state.EntityManager.AddComponentData(entity, new GameConfig
{
DifficultyMultiplier = 1.0f,
MaxEnemies = 100,
SpawnRate = 2.0f
});
state.EntityManager.AddComponentData(entity, new GameState
{
Score = 0,
Wave = 1,
TimeRemaining = 120f
});
}
}
// Access singleton in system
[BurstCompile]
public partial struct ScoreSystem : ISystem
{
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
// Read singleton
var config = SystemAPI.GetSingleton<GameConfig>();
// Write singleton
ref var gameState = ref SystemAPI.GetSingletonRW<GameState>().ValueRW;
gameState.TimeRemaining -= SystemAPI.Time.DeltaTime;
// Check exists
if (SystemAPI.HasSingleton<GameConfig>())
{
// ...
}
}
}
Pattern 7: Baking (Converting GameObjects)
using Unity.Entities;
using UnityEngine;
// Authoring component (MonoBehaviour in Editor)
public class EnemyAuthoring : MonoBehaviour
{
public float Speed = 5f;
public float Health = 100f;
public GameObject ProjectilePrefab;
class Baker : Baker<EnemyAuthoring>
{
public override void Bake(EnemyAuthoring authoring)
{
var entity = GetEntity(TransformUsageFlags.Dynamic);
AddComponent(entity, new Speed { Value = authoring.Speed });
AddComponent(entity, new Health
{
Current = authoring.Health,
Max = authoring.Health
});
AddComponent(entity, new EnemyTag());
if (authoring.ProjectilePrefab != null)
{
AddComponent(entity, new ProjectilePrefab
{
Value = GetEntity(authoring.ProjectilePrefab, TransformUsageFlags.Dynamic)
});
}
}
}
}
// Complex baking with dependencies
public class SpawnerAuthoring : MonoBehaviour
{
public GameObject[] Prefabs;
public float Interval = 1f;
class Baker : Baker<SpawnerAuthoring>
{
public override void Bake(SpawnerAuthoring authoring)
{
var entity = GetEntity(TransformUsageFlags.Dynamic);
AddComponent(entity, new Spawner
{
Interval = authoring.Interval,
Timer = 0f
});
// Bake buffer of prefabs
var buffer = AddBuffer<SpawnPrefabElement>(entity);
foreach (var prefab in authoring.Prefabs)
{
buffer.Add(new SpawnPrefabElement
{
Prefab = GetEntity(prefab, TransformUsageFlags.Dynamic)
});
}
// Declare dependencies
DependsOn(authoring.Prefabs);
}
}
}
Pattern 8: Jobs with Native Collections
using Unity.Jobs;
using Unity.Collections;
using Unity.Burst;
using Unity.Mathematics;
[BurstCompile]
public struct SpatialHashJob : IJobParallelFor
{
[ReadOnly]
public NativeArray<float3> Positions;
// Thread-safe write to hash map
public NativeParallelMultiHashMap<int, int>.ParallelWriter HashMap;
public float CellSize;
public void Execute(int index)
{
float3 pos = Positions[index];
int hash = GetHash(pos);
HashMap.Add(hash, index);
}
int GetHash(float3 pos)
{
int x = (int)math.floor(pos.x / CellSize);
int y = (int)math.floor(pos.y / CellSize);
int z = (int)math.floor(pos.z / CellSize);
return x * 73856093 ^ y * 19349663 ^ z * 83492791;
}
}
[BurstCompile]
public partial struct SpatialHashSystem : ISystem
{
private NativeParallelMultiHashMap<int, int> _hashMap;
public void OnCreate(ref SystemState state)
{
_hashMap = new NativeParallelMultiHashMap<int, int>(10000, Allocator.Persistent);
}
public void OnDestroy(ref SystemState state)
{
_hashMap.Dispose();
}
[BurstCompile]
public void OnUpdate(ref SystemState state)
{
var query = SystemAPI.QueryBuilder()
.WithAll<LocalTransform>()
.Build();
int count = query.CalculateEntityCount();
// Resize if needed
if (_hashMap.Capacity < count)
{
_hashMap.Capacity = count * 2;
}
_hashMap.Clear();
// Get positions
var positions = query.ToComponentDataArray<LocalTransform>(Allocator.TempJob);
var posFloat3 = new NativeArray<float3>(count, Allocator.TempJob);
for (int i = 0; i < count; i++)
{
posFloat3[i] = positions[i].Position;
}
// Build hash map
var hashJob = new SpatialHashJob
{
Positions = posFloat3,
HashMap = _hashMap.AsParallelWriter(),
CellSize = 10f
};
state.Dependency = hashJob.Schedule(count, 64, state.Dependency);
// Cleanup
positions.Dispose(state.Dependency);
posFloat3.Dispose(state.Dependency);
}
}
Performance Tips
// 1. Use Burst everywhere
[BurstCompile]
public partial struct MySystem : ISystem { }
// 2. Prefer IJobEntity over manual iteration
[BurstCompile]
partial struct OptimizedJob : IJobEntity
{
void Execute(ref LocalTransform transform) { }
}
// 3. Schedule parallel when possible
state.Dependency = job.ScheduleParallel(state.Dependency);
// 4. Use ScheduleParallel with chunk iteration
[BurstCompile]
partial struct ChunkJob : IJobChunk
{
public ComponentTypeHandle<Health> HealthHandle;
public void Execute(in ArchetypeChunk chunk, int unfilteredChunkIndex,
bool useEnabledMask, in v128 chunkEnabledMask)
{
var healths = chunk.GetNativeArray(ref HealthHandle);
for (int i = 0; i < chunk.Count; i++)
{
// Process
}
}
}
// 5. Avoid structural changes in hot paths
// Use enableable components instead of add/remove
public struct Disabled : IComponentData, IEnableableComponent { }
Best Practices
Do's
- Use ISystem over SystemBase - Better performance
- Burst compile everything - Massive speedup
- Batch structural changes - Use ECB
- Profile with Profiler - Identify bottlenecks
- Use Aspects - Clean component grouping
Don'ts
- Don't use managed types - Breaks Burst
- Don't structural change in jobs - Use ECB
- Don't over-architect - Start simple
- Don't ignore chunk utilization - Group similar entities
- Don't forget disposal - Native collections leak
Resources
More by wshobson
View allImplement NFT standards (ERC-721, ERC-1155) with proper metadata handling, minting strategies, and marketplace integration. Use when creating NFT contracts, building NFT marketplaces, or implementing digital asset systems.
Implement secure secrets management for CI/CD pipelines using Vault, AWS Secrets Manager, or native platform solutions. Use when handling sensitive credentials, rotating secrets, or securing CI/CD environments.
Implement Linkerd service mesh patterns for lightweight, security-focused service mesh deployments. Use when setting up Linkerd, configuring traffic policies, or implementing zero-trust networking with minimal overhead.
Configure Static Application Security Testing (SAST) tools for automated vulnerability detection in application code. Use when setting up security scanning, implementing DevSecOps practices, or automating code vulnerability detection.