Design multi-cloud architectures using a decision framework to select and integrate services across AWS, Azure, and GCP. Use when building multi-cloud systems, avoiding vendor lock-in, or leveraging best-of-breed services from multiple providers.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: multi-cloud-architecture description: Design multi-cloud architectures using a decision framework to select and integrate services across AWS, Azure, and GCP. Use when building multi-cloud systems, avoiding vendor lock-in, or leveraging best-of-breed services from multiple providers.
Multi-Cloud Architecture
Decision framework and patterns for architecting applications across AWS, Azure, and GCP.
Purpose
Design cloud-agnostic architectures and make informed decisions about service selection across cloud providers.
When to Use
- Design multi-cloud strategies
- Migrate between cloud providers
- Select cloud services for specific workloads
- Implement cloud-agnostic architectures
- Optimize costs across providers
Cloud Service Comparison
Compute Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| EC2 | Virtual Machines | Compute Engine | IaaS VMs |
| ECS | Container Instances | Cloud Run | Containers |
| EKS | AKS | GKE | Kubernetes |
| Lambda | Functions | Cloud Functions | Serverless |
| Fargate | Container Apps | Cloud Run | Managed containers |
Storage Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| S3 | Blob Storage | Cloud Storage | Object storage |
| EBS | Managed Disks | Persistent Disk | Block storage |
| EFS | Azure Files | Filestore | File storage |
| Glacier | Archive Storage | Archive Storage | Cold storage |
Database Services
| AWS | Azure | GCP | Use Case |
|---|---|---|---|
| RDS | SQL Database | Cloud SQL | Managed SQL |
| DynamoDB | Cosmos DB | Firestore | NoSQL |
| Aurora | PostgreSQL/MySQL | Cloud Spanner | Distributed SQL |
| ElastiCache | Cache for Redis | Memorystore | Caching |
Reference: See references/service-comparison.md for complete comparison
Multi-Cloud Patterns
Pattern 1: Single Provider with DR
- Primary workload in one cloud
- Disaster recovery in another
- Database replication across clouds
- Automated failover
Pattern 2: Best-of-Breed
- Use best service from each provider
- AI/ML on GCP
- Enterprise apps on Azure
- General compute on AWS
Pattern 3: Geographic Distribution
- Serve users from nearest cloud region
- Data sovereignty compliance
- Global load balancing
- Regional failover
Pattern 4: Cloud-Agnostic Abstraction
- Kubernetes for compute
- PostgreSQL for database
- S3-compatible storage (MinIO)
- Open source tools
Cloud-Agnostic Architecture
Use Cloud-Native Alternatives
- Compute: Kubernetes (EKS/AKS/GKE)
- Database: PostgreSQL/MySQL (RDS/SQL Database/Cloud SQL)
- Message Queue: Apache Kafka (MSK/Event Hubs/Confluent)
- Cache: Redis (ElastiCache/Azure Cache/Memorystore)
- Object Storage: S3-compatible API
- Monitoring: Prometheus/Grafana
- Service Mesh: Istio/Linkerd
Abstraction Layers
Application Layer
↓
Infrastructure Abstraction (Terraform)
↓
Cloud Provider APIs
↓
AWS / Azure / GCP
Cost Comparison
Compute Pricing Factors
- AWS: On-demand, Reserved, Spot, Savings Plans
- Azure: Pay-as-you-go, Reserved, Spot
- GCP: On-demand, Committed use, Preemptible
Cost Optimization Strategies
- Use reserved/committed capacity (30-70% savings)
- Leverage spot/preemptible instances
- Right-size resources
- Use serverless for variable workloads
- Optimize data transfer costs
- Implement lifecycle policies
- Use cost allocation tags
- Monitor with cloud cost tools
Reference: See references/multi-cloud-patterns.md
Migration Strategy
Phase 1: Assessment
- Inventory current infrastructure
- Identify dependencies
- Assess cloud compatibility
- Estimate costs
Phase 2: Pilot
- Select pilot workload
- Implement in target cloud
- Test thoroughly
- Document learnings
Phase 3: Migration
- Migrate workloads incrementally
- Maintain dual-run period
- Monitor performance
- Validate functionality
Phase 4: Optimization
- Right-size resources
- Implement cloud-native services
- Optimize costs
- Enhance security
Best Practices
- Use infrastructure as code (Terraform/OpenTofu)
- Implement CI/CD pipelines for deployments
- Design for failure across clouds
- Use managed services when possible
- Implement comprehensive monitoring
- Automate cost optimization
- Follow security best practices
- Document cloud-specific configurations
- Test disaster recovery procedures
- Train teams on multiple clouds
Reference Files
references/service-comparison.md- Complete service comparisonreferences/multi-cloud-patterns.md- Architecture patterns
Related Skills
terraform-module-library- For IaC implementationcost-optimization- For cost managementhybrid-cloud-networking- For connectivity
More by wshobson
View allImplement NFT standards (ERC-721, ERC-1155) with proper metadata handling, minting strategies, and marketplace integration. Use when creating NFT contracts, building NFT marketplaces, or implementing digital asset systems.
Implement secure secrets management for CI/CD pipelines using Vault, AWS Secrets Manager, or native platform solutions. Use when handling sensitive credentials, rotating secrets, or securing CI/CD environments.
Implement Linkerd service mesh patterns for lightweight, security-focused service mesh deployments. Use when setting up Linkerd, configuring traffic policies, or implementing zero-trust networking with minimal overhead.
Configure Static Application Security Testing (SAST) tools for automated vulnerability detection in application code. Use when setting up security scanning, implementing DevSecOps practices, or automating code vulnerability detection.