Design multi-stage CI/CD pipelines with approval gates, security checks, and deployment orchestration. Use when architecting deployment workflows, setting up continuous delivery, or implementing GitOps practices.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: deployment-pipeline-design description: Design multi-stage CI/CD pipelines with approval gates, security checks, and deployment orchestration. Use when architecting deployment workflows, setting up continuous delivery, or implementing GitOps practices.
Deployment Pipeline Design
Architecture patterns for multi-stage CI/CD pipelines with approval gates and deployment strategies.
Purpose
Design robust, secure deployment pipelines that balance speed with safety through proper stage organization and approval workflows.
When to Use
- Design CI/CD architecture
- Implement deployment gates
- Configure multi-environment pipelines
- Establish deployment best practices
- Implement progressive delivery
Pipeline Stages
Standard Pipeline Flow
┌─────────┐ ┌──────┐ ┌─────────┐ ┌────────┐ ┌──────────┐
│ Build │ → │ Test │ → │ Staging │ → │ Approve│ → │Production│
└─────────┘ └──────┘ └─────────┘ └────────┘ └──────────┘
Detailed Stage Breakdown
- Source - Code checkout
- Build - Compile, package, containerize
- Test - Unit, integration, security scans
- Staging Deploy - Deploy to staging environment
- Integration Tests - E2E, smoke tests
- Approval Gate - Manual approval required
- Production Deploy - Canary, blue-green, rolling
- Verification - Health checks, monitoring
- Rollback - Automated rollback on failure
Approval Gate Patterns
Pattern 1: Manual Approval
# GitHub Actions
production-deploy:
needs: staging-deploy
environment:
name: production
url: https://app.example.com
runs-on: ubuntu-latest
steps:
- name: Deploy to production
run: |
# Deployment commands
Pattern 2: Time-Based Approval
# GitLab CI
deploy:production:
stage: deploy
script:
- deploy.sh production
environment:
name: production
when: delayed
start_in: 30 minutes
only:
- main
Pattern 3: Multi-Approver
# Azure Pipelines
stages:
- stage: Production
dependsOn: Staging
jobs:
- deployment: Deploy
environment:
name: production
resourceType: Kubernetes
strategy:
runOnce:
preDeploy:
steps:
- task: ManualValidation@0
inputs:
notifyUsers: 'team-leads@example.com'
instructions: 'Review staging metrics before approving'
Reference: See assets/approval-gate-template.yml
Deployment Strategies
1. Rolling Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
spec:
replicas: 10
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 2
maxUnavailable: 1
Characteristics:
- Gradual rollout
- Zero downtime
- Easy rollback
- Best for most applications
2. Blue-Green Deployment
# Blue (current)
kubectl apply -f blue-deployment.yaml
kubectl label service my-app version=blue
# Green (new)
kubectl apply -f green-deployment.yaml
# Test green environment
kubectl label service my-app version=green
# Rollback if needed
kubectl label service my-app version=blue
Characteristics:
- Instant switchover
- Easy rollback
- Doubles infrastructure cost temporarily
- Good for high-risk deployments
3. Canary Deployment
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
name: my-app
spec:
replicas: 10
strategy:
canary:
steps:
- setWeight: 10
- pause: {duration: 5m}
- setWeight: 25
- pause: {duration: 5m}
- setWeight: 50
- pause: {duration: 5m}
- setWeight: 100
Characteristics:
- Gradual traffic shift
- Risk mitigation
- Real user testing
- Requires service mesh or similar
4. Feature Flags
from flagsmith import Flagsmith
flagsmith = Flagsmith(environment_key="API_KEY")
if flagsmith.has_feature("new_checkout_flow"):
# New code path
process_checkout_v2()
else:
# Existing code path
process_checkout_v1()
Characteristics:
- Deploy without releasing
- A/B testing
- Instant rollback
- Granular control
Pipeline Orchestration
Multi-Stage Pipeline Example
name: Production Pipeline
on:
push:
branches: [ main ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build application
run: make build
- name: Build Docker image
run: docker build -t myapp:${{ github.sha }} .
- name: Push to registry
run: docker push myapp:${{ github.sha }}
test:
needs: build
runs-on: ubuntu-latest
steps:
- name: Unit tests
run: make test
- name: Security scan
run: trivy image myapp:${{ github.sha }}
deploy-staging:
needs: test
runs-on: ubuntu-latest
environment:
name: staging
steps:
- name: Deploy to staging
run: kubectl apply -f k8s/staging/
integration-test:
needs: deploy-staging
runs-on: ubuntu-latest
steps:
- name: Run E2E tests
run: npm run test:e2e
deploy-production:
needs: integration-test
runs-on: ubuntu-latest
environment:
name: production
steps:
- name: Canary deployment
run: |
kubectl apply -f k8s/production/
kubectl argo rollouts promote my-app
verify:
needs: deploy-production
runs-on: ubuntu-latest
steps:
- name: Health check
run: curl -f https://app.example.com/health
- name: Notify team
run: |
curl -X POST ${{ secrets.SLACK_WEBHOOK }} \
-d '{"text":"Production deployment successful!"}'
Pipeline Best Practices
- Fail fast - Run quick tests first
- Parallel execution - Run independent jobs concurrently
- Caching - Cache dependencies between runs
- Artifact management - Store build artifacts
- Environment parity - Keep environments consistent
- Secrets management - Use secret stores (Vault, etc.)
- Deployment windows - Schedule deployments appropriately
- Monitoring integration - Track deployment metrics
- Rollback automation - Auto-rollback on failures
- Documentation - Document pipeline stages
Rollback Strategies
Automated Rollback
deploy-and-verify:
steps:
- name: Deploy new version
run: kubectl apply -f k8s/
- name: Wait for rollout
run: kubectl rollout status deployment/my-app
- name: Health check
id: health
run: |
for i in {1..10}; do
if curl -sf https://app.example.com/health; then
exit 0
fi
sleep 10
done
exit 1
- name: Rollback on failure
if: failure()
run: kubectl rollout undo deployment/my-app
Manual Rollback
# List revision history
kubectl rollout history deployment/my-app
# Rollback to previous version
kubectl rollout undo deployment/my-app
# Rollback to specific revision
kubectl rollout undo deployment/my-app --to-revision=3
Monitoring and Metrics
Key Pipeline Metrics
- Deployment Frequency - How often deployments occur
- Lead Time - Time from commit to production
- Change Failure Rate - Percentage of failed deployments
- Mean Time to Recovery (MTTR) - Time to recover from failure
- Pipeline Success Rate - Percentage of successful runs
- Average Pipeline Duration - Time to complete pipeline
Integration with Monitoring
- name: Post-deployment verification
run: |
# Wait for metrics stabilization
sleep 60
# Check error rate
ERROR_RATE=$(curl -s "$PROMETHEUS_URL/api/v1/query?query=rate(http_errors_total[5m])" | jq '.data.result[0].value[1]')
if (( $(echo "$ERROR_RATE > 0.01" | bc -l) )); then
echo "Error rate too high: $ERROR_RATE"
exit 1
fi
Reference Files
references/pipeline-orchestration.md- Complex pipeline patternsassets/approval-gate-template.yml- Approval workflow templates
Related Skills
github-actions-templates- For GitHub Actions implementationgitlab-ci-patterns- For GitLab CI implementationsecrets-management- For secrets handling
More by wshobson
View allImplement NFT standards (ERC-721, ERC-1155) with proper metadata handling, minting strategies, and marketplace integration. Use when creating NFT contracts, building NFT marketplaces, or implementing digital asset systems.
Implement secure secrets management for CI/CD pipelines using Vault, AWS Secrets Manager, or native platform solutions. Use when handling sensitive credentials, rotating secrets, or securing CI/CD environments.
Implement Linkerd service mesh patterns for lightweight, security-focused service mesh deployments. Use when setting up Linkerd, configuring traffic policies, or implementing zero-trust networking with minimal overhead.
Configure Static Application Security Testing (SAST) tools for automated vulnerability detection in application code. Use when setting up security scanning, implementing DevSecOps practices, or automating code vulnerability detection.