smallnest

markitdown

@smallnest/markitdown
smallnest
116
16 forks
Updated 1/6/2026
View on GitHub

Convert various file formats (PDF, Office documents, images, audio, web content, structured data) to Markdown optimized for LLM processing. Use when converting documents to markdown, extracting text from PDFs/Office files, transcribing audio, performing OCR on images, extracting YouTube transcripts, or processing batches of files. Supports 20+ formats including DOCX, XLSX, PPTX, PDF, HTML, EPUB, CSV, JSON, images with OCR, and audio with transcription.

Installation

$skills install @smallnest/markitdown
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathtestdata/skills/markitdown/SKILL.md
Branchmain
Scoped Name@smallnest/markitdown

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: markitdown description: Convert various file formats (PDF, Office documents, images, audio, web content, structured data) to Markdown optimized for LLM processing. Use when converting documents to markdown, extracting text from PDFs/Office files, transcribing audio, performing OCR on images, extracting YouTube transcripts, or processing batches of files. Supports 20+ formats including DOCX, XLSX, PPTX, PDF, HTML, EPUB, CSV, JSON, images with OCR, and audio with transcription.

MarkItDown

Overview

MarkItDown is a Python utility that converts various file formats into Markdown format, optimized for use with large language models and text analysis pipelines. It preserves document structure (headings, lists, tables, hyperlinks) while producing clean, token-efficient Markdown output.

When to Use This Skill

Use this skill when users request:

  • Converting documents to Markdown format
  • Extracting text from PDF, Word, PowerPoint, or Excel files
  • Performing OCR on images to extract text
  • Transcribing audio files to text
  • Extracting YouTube video transcripts
  • Processing HTML, EPUB, or web content to Markdown
  • Converting structured data (CSV, JSON, XML) to readable Markdown
  • Batch converting multiple files or ZIP archives
  • Preparing documents for LLM analysis or RAG systems

Core Capabilities

1. Document Conversion

Convert Office documents and PDFs to Markdown while preserving structure.

Supported formats:

  • PDF files (with optional Azure Document Intelligence integration)
  • Word documents (DOCX)
  • PowerPoint presentations (PPTX)
  • Excel spreadsheets (XLSX, XLS)

Basic usage:

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)

Command-line:

markitdown document.pdf -o output.md

See references/document_conversion.md for detailed documentation on document-specific features.

2. Media Processing

Extract text from images using OCR and transcribe audio files to text.

Supported formats:

  • Images (JPEG, PNG, GIF, etc.) with EXIF metadata extraction
  • Audio files with speech transcription (requires speech_recognition)

Image with OCR:

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("image.jpg")
print(result.text_content)  # Includes EXIF metadata and OCR text

Audio transcription:

result = md.convert("audio.wav")
print(result.text_content)  # Transcribed speech

See references/media_processing.md for advanced media handling options.

3. Web Content Extraction

Convert web-based content and e-books to Markdown.

Supported formats:

  • HTML files and web pages
  • YouTube video transcripts (via URL)
  • EPUB books
  • RSS feeds

YouTube transcript:

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("https://youtube.com/watch?v=VIDEO_ID")
print(result.text_content)

See references/web_content.md for web extraction details.

4. Structured Data Handling

Convert structured data formats to readable Markdown tables.

Supported formats:

  • CSV files
  • JSON files
  • XML files

CSV to Markdown table:

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("data.csv")
print(result.text_content)  # Formatted as Markdown table

See references/structured_data.md for format-specific options.

5. Advanced Integrations

Enhance conversion quality with AI-powered features.

Azure Document Intelligence: For enhanced PDF processing with better table extraction and layout analysis:

from markitdown import MarkItDown

md = MarkItDown(docintel_endpoint="<endpoint>", docintel_key="<key>")
result = md.convert("complex.pdf")

LLM-Powered Image Descriptions: Generate detailed image descriptions using GPT-4o:

from markitdown import MarkItDown
from openai import OpenAI

client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("presentation.pptx")  # Images described with LLM

See references/advanced_integrations.md for integration details.

6. Batch Processing

Process multiple files or entire ZIP archives at once.

ZIP file processing:

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("archive.zip")
print(result.text_content)  # All files converted and concatenated

Batch script: Use the provided batch processing script for directory conversion:

python scripts/batch_convert.py /path/to/documents /path/to/output

See scripts/batch_convert.py for implementation details.

Installation

Full installation (all features):

pip install 'markitdown[all]'

Modular installation (specific features):

pip install 'markitdown[pdf]'           # PDF support
pip install 'markitdown[docx]'          # Word support
pip install 'markitdown[pptx]'          # PowerPoint support
pip install 'markitdown[xlsx]'          # Excel support
pip install 'markitdown[audio]'         # Audio transcription
pip install 'markitdown[youtube]'       # YouTube transcripts

Requirements:

  • Python 3.10 or higher

Output Format

MarkItDown produces clean, token-efficient Markdown optimized for LLM consumption:

  • Preserves headings, lists, and tables
  • Maintains hyperlinks and formatting
  • Includes metadata where relevant (EXIF, document properties)
  • No temporary files created (streaming approach)

Common Workflows

Preparing documents for RAG:

from markitdown import MarkItDown

md = MarkItDown()

# Convert knowledge base documents
docs = ["manual.pdf", "guide.docx", "faq.html"]
markdown_content = []

for doc in docs:
    result = md.convert(doc)
    markdown_content.append(result.text_content)

# Now ready for embedding and indexing

Document analysis pipeline:

# Convert all PDFs in directory
for file in documents/*.pdf; do
    markitdown "$file" -o "markdown/$(basename "$file" .pdf).md"
done

Plugin System

MarkItDown supports extensible plugins for custom conversion logic. Plugins are disabled by default for security:

from markitdown import MarkItDown

# Enable plugins if needed
md = MarkItDown(enable_plugins=True)

Resources

This skill includes comprehensive reference documentation for each capability:

  • references/document_conversion.md - Detailed PDF, DOCX, PPTX, XLSX conversion options
  • references/media_processing.md - Image OCR and audio transcription details
  • references/web_content.md - HTML, YouTube, and EPUB extraction
  • references/structured_data.md - CSV, JSON, XML conversion formats
  • references/advanced_integrations.md - Azure Document Intelligence and LLM integration
  • scripts/batch_convert.py - Batch processing utility for directories

More by smallnest

View all
slidev
153

Create and edit presentation slides using Slidev framework when user requests slides, presentations, or deck modifications

wechat-article-writer
153

专业的微信公众号文章创作助手。当用户提供网站链接、文本素材或图像,需要创作微信公众号文章时使用。支持通过搜索工具丰富内容、优化标题、调整语气为官方文案风格,帮助创作高质量的公众号推文。适用于企业宣传、品牌推广、资讯报道等官方内容创作场景。

request-analyzer
153

Proactively analyze user requests at the start of conversations to determine task type, assess prompt quality, and intelligently recommend which skills to activate. Should activate for ALL user requests to ensure optimal workflow. Evaluates clarity, specificity, and completeness to suggest prompt-optimizer when needed. Identifies UI design tasks for ui-analyzer and component requests for react-component-generator. Acts as intelligent skill coordinator.

prompt-optimizer
153

Analyze and optimize user prompts for clarity, specificity, and completeness using interactive questionnaires or direct analysis. Use this skill when user requests are vague, ambiguous, incomplete, or lack necessary details. Supports two modes - Interactive Mode (uses AskUserQuestion tool for guided clarification) and Direct Analysis Mode (provides optimization suggestions). Triggers on prompts containing vague language like "something", "thing", "stuff", "it", or when requests lack context, technical specifications, success criteria, or examples. When user requests interactive/questionnaire mode, use AskUserQuestion to guide them through structured questions. Helps transform unclear requests into well-structured, actionable prompts.