Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, .tsv, etc) for creating new spreadsheets, reading/analyzing data, modifying existing spreadsheets, or recalculating formulas.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: xlsx description: Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, .tsv, etc) for creating new spreadsheets, reading/analyzing data, modifying existing spreadsheets, or recalculating formulas. source: anthropics/skills license: Apache-2.0
Excel/Spreadsheet Processing
Reading and Analyzing Data
import pandas as pd
# Read Excel
df = pd.read_excel('file.xlsx') # Default: first sheet
all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict
# Analyze
df.head() # Preview data
df.info() # Column info
df.describe() # Statistics
# Write Excel
df.to_excel('output.xlsx', index=False)
Creating Excel Files with openpyxl
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Alignment
wb = Workbook()
sheet = wb.active
# Add data
sheet['A1'] = 'Hello'
sheet['B1'] = 'World'
sheet.append(['Row', 'of', 'data'])
# Add formula - ALWAYS use formulas, not hardcoded values
sheet['B2'] = '=SUM(A1:A10)'
# Formatting
sheet['A1'].font = Font(bold=True, color='FF0000')
sheet['A1'].fill = PatternFill('solid', start_color='FFFF00')
sheet['A1'].alignment = Alignment(horizontal='center')
# Column width
sheet.column_dimensions['A'].width = 20
wb.save('output.xlsx')
Editing Existing Files
from openpyxl import load_workbook
wb = load_workbook('existing.xlsx')
sheet = wb.active
# Modify cells
sheet['A1'] = 'New Value'
sheet.insert_rows(2)
sheet.delete_cols(3)
# Add new sheet
new_sheet = wb.create_sheet('NewSheet')
new_sheet['A1'] = 'Data'
wb.save('modified.xlsx')
Critical: Use Formulas, Not Hardcoded Values
# BAD - Hardcoding calculated values
total = df['Sales'].sum()
sheet['B10'] = total # Hardcodes 5000
# GOOD - Using Excel formulas
sheet['B10'] = '=SUM(B2:B9)'
sheet['C5'] = '=(C4-C2)/C2' # Growth rate
sheet['D20'] = '=AVERAGE(D2:D19)'
Financial Model Standards
- Blue text: Hardcoded inputs
- Black text: ALL formulas
- Green text: Links from other worksheets
- Yellow background: Key assumptions
Best Practices
- Use
data_only=Trueto read calculated values - For large files: Use
read_only=Trueorwrite_only=True - Formulas are preserved but not evaluated by openpyxl
More by skillcreatorai
View allCreate, update, and manage Jira issues from natural language. Use when the user wants to log bugs, create tickets, update issue status, or manage their Jira backlog.
Clarify requirements before implementing. Do not use automatically, only when invoked explicitly.
Comprehensive document creation, editing, and analysis with support for tracked changes, comments, formatting preservation, and text extraction. When Claude needs to work with professional documents (.docx files) for creating new documents, modifying content, working with tracked changes, or adding comments.
Backend API design, database architecture, microservices patterns, and test-driven development. Use for designing APIs, database schemas, or backend system architecture.