Build MCP (Model Context Protocol) servers that give Claude new capabilities. Use when user wants to create an MCP server, add tools to Claude, or integrate external services.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: mcp-builder description: Build MCP (Model Context Protocol) servers that give Claude new capabilities. Use when user wants to create an MCP server, add tools to Claude, or integrate external services.
MCP Server Building Skill
You now have expertise in building MCP (Model Context Protocol) servers. MCP enables Claude to interact with external services through a standardized protocol.
What is MCP?
MCP servers expose:
- Tools: Functions Claude can call (like API endpoints)
- Resources: Data Claude can read (like files or database records)
- Prompts: Pre-built prompt templates
Quick Start: Python MCP Server
1. Project Setup
# Create project
mkdir my-mcp-server && cd my-mcp-server
python3 -m venv venv && source venv/bin/activate
# Install MCP SDK
pip install mcp
2. Basic Server Template
#!/usr/bin/env python3
"""my_server.py - A simple MCP server"""
from mcp.server import Server
from mcp.server.stdio import stdio_server
from mcp.types import Tool, TextContent
# Create server instance
server = Server("my-server")
# Define a tool
@server.tool()
async def hello(name: str) -> str:
"""Say hello to someone.
Args:
name: The name to greet
"""
return f"Hello, {name}!"
@server.tool()
async def add_numbers(a: int, b: int) -> str:
"""Add two numbers together.
Args:
a: First number
b: Second number
"""
return str(a + b)
# Run server
async def main():
async with stdio_server() as (read, write):
await server.run(read, write)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
3. Register with Claude
Add to ~/.claude/mcp.json:
{
"mcpServers": {
"my-server": {
"command": "python3",
"args": ["/path/to/my_server.py"]
}
}
}
TypeScript MCP Server
1. Setup
mkdir my-mcp-server && cd my-mcp-server
npm init -y
npm install @modelcontextprotocol/sdk
2. Template
// src/index.ts
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
const server = new Server({
name: "my-server",
version: "1.0.0",
});
// Define tools
server.setRequestHandler("tools/list", async () => ({
tools: [
{
name: "hello",
description: "Say hello to someone",
inputSchema: {
type: "object",
properties: {
name: { type: "string", description: "Name to greet" },
},
required: ["name"],
},
},
],
}));
server.setRequestHandler("tools/call", async (request) => {
if (request.params.name === "hello") {
const name = request.params.arguments.name;
return { content: [{ type: "text", text: `Hello, ${name}!` }] };
}
throw new Error("Unknown tool");
});
// Start server
const transport = new StdioServerTransport();
server.connect(transport);
Advanced Patterns
External API Integration
import httpx
from mcp.server import Server
server = Server("weather-server")
@server.tool()
async def get_weather(city: str) -> str:
"""Get current weather for a city."""
async with httpx.AsyncClient() as client:
resp = await client.get(
f"https://api.weatherapi.com/v1/current.json",
params={"key": "YOUR_API_KEY", "q": city}
)
data = resp.json()
return f"{city}: {data['current']['temp_c']}C, {data['current']['condition']['text']}"
Database Access
import sqlite3
from mcp.server import Server
server = Server("db-server")
@server.tool()
async def query_db(sql: str) -> str:
"""Execute a read-only SQL query."""
if not sql.strip().upper().startswith("SELECT"):
return "Error: Only SELECT queries allowed"
conn = sqlite3.connect("data.db")
cursor = conn.execute(sql)
rows = cursor.fetchall()
conn.close()
return str(rows)
Resources (Read-only Data)
@server.resource("config://settings")
async def get_settings() -> str:
"""Application settings."""
return open("settings.json").read()
@server.resource("file://{path}")
async def read_file(path: str) -> str:
"""Read a file from the workspace."""
return open(path).read()
Testing
# Test with MCP Inspector
npx @anthropics/mcp-inspector python3 my_server.py
# Or send test messages directly
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | python3 my_server.py
Best Practices
- Clear tool descriptions: Claude uses these to decide when to call tools
- Input validation: Always validate and sanitize inputs
- Error handling: Return meaningful error messages
- Async by default: Use async/await for I/O operations
- Security: Never expose sensitive operations without auth
- Idempotency: Tools should be safe to retry
More by shareAI-lab
View allProcess PDF files - extract text, create PDFs, merge documents. Use when user asks to read PDF, create PDF, or work with PDF files.
Design and build AI agents for any domain. Use when users: (1) ask to "create an agent", "build an assistant", or "design an AI system" (2) want to understand agent architecture, agentic patterns, or autonomous AI (3) need help with capabilities, subagents, planning, or skill mechanisms (4) ask about Claude Code, Cursor, or similar agent internals (5) want to build agents for business, research, creative, or operational tasks Keywords: agent, assistant, autonomous, workflow, tool use, multi-step, orchestration
Perform thorough code reviews with security, performance, and maintainability analysis. Use when user asks to review code, check for bugs, or audit a codebase.
