CLI modernization and hooks system enhancement for claude-flow v3. Implements interactive prompts, command decomposition, enhanced hooks integration, and intelligent workflow automation.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: "V3 CLI Modernization" description: "CLI modernization and hooks system enhancement for claude-flow v3. Implements interactive prompts, command decomposition, enhanced hooks integration, and intelligent workflow automation."
V3 CLI Modernization
What This Skill Does
Modernizes claude-flow v3 CLI with interactive prompts, intelligent command decomposition, enhanced hooks integration, performance optimization, and comprehensive workflow automation capabilities.
Quick Start
# Initialize CLI modernization analysis
Task("CLI architecture", "Analyze current CLI structure and identify optimization opportunities", "cli-hooks-developer")
# Modernization implementation (parallel)
Task("Command decomposition", "Break down large CLI files into focused modules", "cli-hooks-developer")
Task("Interactive prompts", "Implement intelligent interactive CLI experience", "cli-hooks-developer")
Task("Hooks enhancement", "Deep integrate hooks with CLI lifecycle", "cli-hooks-developer")
CLI Architecture Modernization
Current State Analysis
Current CLI Issues:
├── index.ts: 108KB monolithic file
├── enterprise.ts: 68KB feature module
├── Limited interactivity: Basic command parsing
├── Hooks integration: Basic pre/post execution
└── No intelligent workflows: Manual command chaining
Target Architecture:
├── Modular Commands: <500 lines per command
├── Interactive Prompts: Smart context-aware UX
├── Enhanced Hooks: Deep lifecycle integration
├── Workflow Automation: Intelligent command orchestration
└── Performance: <200ms command response time
Modular Command Architecture
// src/cli/core/command-registry.ts
interface CommandModule {
name: string;
description: string;
category: CommandCategory;
handler: CommandHandler;
middleware: MiddlewareStack;
permissions: Permission[];
examples: CommandExample[];
}
export class ModularCommandRegistry {
private commands = new Map<string, CommandModule>();
private categories = new Map<CommandCategory, CommandModule[]>();
private aliases = new Map<string, string>();
registerCommand(command: CommandModule): void {
this.commands.set(command.name, command);
// Register in category index
if (!this.categories.has(command.category)) {
this.categories.set(command.category, []);
}
this.categories.get(command.category)!.push(command);
}
async executeCommand(name: string, args: string[]): Promise<CommandResult> {
const command = this.resolveCommand(name);
if (!command) {
throw new CommandNotFoundError(name, this.getSuggestions(name));
}
// Execute middleware stack
const context = await this.buildExecutionContext(command, args);
const result = await command.middleware.execute(context);
return result;
}
private resolveCommand(name: string): CommandModule | undefined {
// Try exact match first
if (this.commands.has(name)) {
return this.commands.get(name);
}
// Try alias
const aliasTarget = this.aliases.get(name);
if (aliasTarget) {
return this.commands.get(aliasTarget);
}
// Try fuzzy match
return this.findFuzzyMatch(name);
}
}
Command Decomposition Strategy
Swarm Commands Module
// src/cli/commands/swarm/swarm.command.ts
@Command({
name: 'swarm',
description: 'Swarm coordination and management',
category: 'orchestration'
})
export class SwarmCommand {
constructor(
private swarmCoordinator: UnifiedSwarmCoordinator,
private promptService: InteractivePromptService
) {}
@SubCommand('init')
@Option('--topology', 'Swarm topology (mesh|hierarchical|adaptive)', 'hierarchical')
@Option('--agents', 'Number of agents to spawn', 5)
@Option('--interactive', 'Interactive agent configuration', false)
async init(
@Arg('projectName') projectName: string,
options: SwarmInitOptions
): Promise<CommandResult> {
if (options.interactive) {
return this.interactiveSwarmInit(projectName);
}
return this.quickSwarmInit(projectName, options);
}
private async interactiveSwarmInit(projectName: string): Promise<CommandResult> {
console.log(`🚀 Initializing Swarm for ${projectName}`);
// Interactive topology selection
const topology = await this.promptService.select({
message: 'Select swarm topology:',
choices: [
{ name: 'Hierarchical (Queen-led coordination)', value: 'hierarchical' },
{ name: 'Mesh (Peer-to-peer collaboration)', value: 'mesh' },
{ name: 'Adaptive (Dynamic topology switching)', value: 'adaptive' }
]
});
// Agent configuration
const agents = await this.promptAgentConfiguration();
// Initialize with configuration
const swarm = await this.swarmCoordinator.initialize({
name: projectName,
topology,
agents,
hooks: {
onAgentSpawn: this.handleAgentSpawn.bind(this),
onTaskComplete: this.handleTaskComplete.bind(this),
onSwarmComplete: this.handleSwarmComplete.bind(this)
}
});
return CommandResult.success({
message: `✅ Swarm ${projectName} initialized with ${agents.length} agents`,
data: { swarmId: swarm.id, topology, agentCount: agents.length }
});
}
@SubCommand('status')
async status(): Promise<CommandResult> {
const swarms = await this.swarmCoordinator.listActiveSwarms();
if (swarms.length === 0) {
return CommandResult.info('No active swarms found');
}
// Interactive swarm selection if multiple
const selectedSwarm = swarms.length === 1
? swarms[0]
: await this.promptService.select({
message: 'Select swarm to inspect:',
choices: swarms.map(s => ({
name: `${s.name} (${s.agents.length} agents, ${s.topology})`,
value: s
}))
});
return this.displaySwarmStatus(selectedSwarm);
}
}
Learning Commands Module
// src/cli/commands/learning/learning.command.ts
@Command({
name: 'learning',
description: 'Learning system management and optimization',
category: 'intelligence'
})
export class LearningCommand {
constructor(
private learningService: IntegratedLearningService,
private promptService: InteractivePromptService
) {}
@SubCommand('start')
@Option('--algorithm', 'RL algorithm to use', 'auto')
@Option('--tier', 'Learning tier (basic|standard|advanced)', 'standard')
async start(options: LearningStartOptions): Promise<CommandResult> {
// Auto-detect optimal algorithm if not specified
if (options.algorithm === 'auto') {
const taskContext = await this.analyzeCurrentContext();
options.algorithm = this.learningService.selectOptimalAlgorithm(taskContext);
console.log(`🧠 Auto-selected ${options.algorithm} algorithm based on context`);
}
const session = await this.learningService.startSession({
algorithm: options.algorithm,
tier: options.tier,
userId: await this.getCurrentUser()
});
return CommandResult.success({
message: `🚀 Learning session started with ${options.algorithm}`,
data: { sessionId: session.id, algorithm: options.algorithm, tier: options.tier }
});
}
@SubCommand('feedback')
@Arg('reward', 'Reward value (0-1)', 'number')
async feedback(
@Arg('reward') reward: number,
@Option('--context', 'Additional context for learning')
context?: string
): Promise<CommandResult> {
const activeSession = await this.learningService.getActiveSession();
if (!activeSession) {
return CommandResult.error('No active learning session found. Start one with `learning start`');
}
await this.learningService.submitFeedback({
sessionId: activeSession.id,
reward,
context,
timestamp: new Date()
});
return CommandResult.success({
message: `📊 Feedback recorded (reward: ${reward})`,
data: { reward, sessionId: activeSession.id }
});
}
@SubCommand('metrics')
async metrics(): Promise<CommandResult> {
const metrics = await this.learningService.getMetrics();
// Interactive metrics display
await this.displayInteractiveMetrics(metrics);
return CommandResult.success('Metrics displayed');
}
}
Interactive Prompt System
Advanced Prompt Service
// src/cli/services/interactive-prompt.service.ts
interface PromptOptions {
message: string;
type: 'select' | 'multiselect' | 'input' | 'confirm' | 'progress';
choices?: PromptChoice[];
default?: any;
validate?: (input: any) => boolean | string;
transform?: (input: any) => any;
}
export class InteractivePromptService {
private inquirer: any; // Dynamic import for tree-shaking
async select<T>(options: SelectPromptOptions<T>): Promise<T> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'list',
name: 'selection',
message: options.message,
choices: options.choices,
default: options.default
}]);
return result.selection;
}
async multiSelect<T>(options: MultiSelectPromptOptions<T>): Promise<T[]> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'checkbox',
name: 'selections',
message: options.message,
choices: options.choices,
validate: (input: T[]) => {
if (options.minSelections && input.length < options.minSelections) {
return `Please select at least ${options.minSelections} options`;
}
if (options.maxSelections && input.length > options.maxSelections) {
return `Please select at most ${options.maxSelections} options`;
}
return true;
}
}]);
return result.selections;
}
async input(options: InputPromptOptions): Promise<string> {
const { default: inquirer } = await import('inquirer');
const result = await inquirer.prompt([{
type: 'input',
name: 'input',
message: options.message,
default: options.default,
validate: options.validate,
transformer: options.transform
}]);
return result.input;
}
async progressTask<T>(
task: ProgressTask<T>,
options: ProgressOptions
): Promise<T> {
const { default: cliProgress } = await import('cli-progress');
const progressBar = new cliProgress.SingleBar({
format: `${options.title} |{bar}| {percentage}% | {status}`,
barCompleteChar: '█',
barIncompleteChar: '░',
hideCursor: true
});
progressBar.start(100, 0, { status: 'Starting...' });
try {
const result = await task({
updateProgress: (percent: number, status?: string) => {
progressBar.update(percent, { status: status || 'Processing...' });
}
});
progressBar.update(100, { status: 'Complete!' });
progressBar.stop();
return result;
} catch (error) {
progressBar.stop();
throw error;
}
}
async confirmWithDetails(
message: string,
details: ConfirmationDetails
): Promise<boolean> {
console.log('\n' + chalk.bold(message));
console.log(chalk.gray('Details:'));
for (const [key, value] of Object.entries(details)) {
console.log(chalk.gray(` ${key}: ${value}`));
}
return this.confirm('\nProceed?');
}
}
Enhanced Hooks Integration
Deep CLI Hooks Integration
// src/cli/hooks/cli-hooks-manager.ts
interface CLIHookEvent {
type: 'command_start' | 'command_end' | 'command_error' | 'agent_spawn' | 'task_complete';
command: string;
args: string[];
context: ExecutionContext;
timestamp: Date;
}
export class CLIHooksManager {
private hooks: Map<string, HookHandler[]> = new Map();
private learningIntegration: LearningHooksIntegration;
constructor() {
this.learningIntegration = new LearningHooksIntegration();
this.setupDefaultHooks();
}
private setupDefaultHooks(): void {
// Learning integration hooks
this.registerHook('command_start', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandStart(event);
});
this.registerHook('command_end', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandSuccess(event);
});
this.registerHook('command_error', async (event: CLIHookEvent) => {
await this.learningIntegration.recordCommandError(event);
});
// Intelligent suggestions
this.registerHook('command_start', async (event: CLIHookEvent) => {
const suggestions = await this.generateIntelligentSuggestions(event);
if (suggestions.length > 0) {
this.displaySuggestions(suggestions);
}
});
// Performance monitoring
this.registerHook('command_end', async (event: CLIHookEvent) => {
await this.recordPerformanceMetrics(event);
});
}
async executeHooks(type: string, event: CLIHookEvent): Promise<void> {
const handlers = this.hooks.get(type) || [];
await Promise.all(handlers.map(handler =>
this.executeHookSafely(handler, event)
));
}
private async generateIntelligentSuggestions(event: CLIHookEvent): Promise<Suggestion[]> {
const context = await this.learningIntegration.getExecutionContext(event);
const patterns = await this.learningIntegration.findSimilarPatterns(context);
return patterns.map(pattern => ({
type: 'optimization',
message: `Based on similar executions, consider: ${pattern.suggestion}`,
confidence: pattern.confidence
}));
}
}
Learning Integration
// src/cli/hooks/learning-hooks-integration.ts
export class LearningHooksIntegration {
constructor(
private agenticFlowHooks: AgenticFlowHooksClient,
private agentDBLearning: AgentDBLearningClient
) {}
async recordCommandStart(event: CLIHookEvent): Promise<void> {
// Start trajectory tracking
await this.agenticFlowHooks.trajectoryStart({
sessionId: event.context.sessionId,
command: event.command,
args: event.args,
context: event.context
});
// Record experience in AgentDB
await this.agentDBLearning.recordExperience({
type: 'command_execution',
state: this.encodeCommandState(event),
action: event.command,
timestamp: event.timestamp
});
}
async recordCommandSuccess(event: CLIHookEvent): Promise<void> {
const executionTime = Date.now() - event.timestamp.getTime();
const reward = this.calculateReward(event, executionTime, true);
// Complete trajectory
await this.agenticFlowHooks.trajectoryEnd({
sessionId: event.context.sessionId,
success: true,
reward,
verdict: 'positive'
});
// Submit feedback to learning system
await this.agentDBLearning.submitFeedback({
sessionId: event.context.learningSessionId,
reward,
success: true,
latencyMs: executionTime
});
// Store successful pattern
if (reward > 0.8) {
await this.agenticFlowHooks.storePattern({
pattern: event.command,
solution: event.context.result,
confidence: reward
});
}
}
async recordCommandError(event: CLIHookEvent): Promise<void> {
const executionTime = Date.now() - event.timestamp.getTime();
const reward = this.calculateReward(event, executionTime, false);
// Complete trajectory with error
await this.agenticFlowHooks.trajectoryEnd({
sessionId: event.context.sessionId,
success: false,
reward,
verdict: 'negative',
error: event.context.error
});
// Learn from failure
await this.agentDBLearning.submitFeedback({
sessionId: event.context.learningSessionId,
reward,
success: false,
latencyMs: executionTime,
error: event.context.error
});
}
private calculateReward(event: CLIHookEvent, executionTime: number, success: boolean): number {
if (!success) return 0;
// Base reward for success
let reward = 0.5;
// Performance bonus (faster execution)
const expectedTime = this.getExpectedExecutionTime(event.command);
if (executionTime < expectedTime) {
reward += 0.3 * (1 - executionTime / expectedTime);
}
// Complexity bonus
const complexity = this.calculateCommandComplexity(event);
reward += complexity * 0.2;
return Math.min(reward, 1.0);
}
}
Intelligent Workflow Automation
Workflow Orchestrator
// src/cli/workflows/workflow-orchestrator.ts
interface WorkflowStep {
id: string;
command: string;
args: string[];
dependsOn: string[];
condition?: WorkflowCondition;
retryPolicy?: RetryPolicy;
}
export class WorkflowOrchestrator {
constructor(
private commandRegistry: ModularCommandRegistry,
private promptService: InteractivePromptService
) {}
async executeWorkflow(workflow: Workflow): Promise<WorkflowResult> {
const context = new WorkflowExecutionContext(workflow);
// Display workflow overview
await this.displayWorkflowOverview(workflow);
const confirmed = await this.promptService.confirm(
'Execute this workflow?'
);
if (!confirmed) {
return WorkflowResult.cancelled();
}
// Execute steps
return this.promptService.progressTask(
async ({ updateProgress }) => {
const steps = this.sortStepsByDependencies(workflow.steps);
for (let i = 0; i < steps.length; i++) {
const step = steps[i];
updateProgress((i / steps.length) * 100, `Executing ${step.command}`);
await this.executeStep(step, context);
}
return WorkflowResult.success(context.getResults());
},
{ title: `Workflow: ${workflow.name}` }
);
}
async generateWorkflowFromIntent(intent: string): Promise<Workflow> {
// Use learning system to generate workflow
const patterns = await this.findWorkflowPatterns(intent);
if (patterns.length === 0) {
throw new Error('Could not generate workflow for intent');
}
// Select best pattern or let user choose
const selectedPattern = patterns.length === 1
? patterns[0]
: await this.promptService.select({
message: 'Select workflow template:',
choices: patterns.map(p => ({
name: `${p.name} (${p.confidence}% match)`,
value: p
}))
});
return this.customizeWorkflow(selectedPattern, intent);
}
private async executeStep(step: WorkflowStep, context: WorkflowExecutionContext): Promise<void> {
// Check conditions
if (step.condition && !this.evaluateCondition(step.condition, context)) {
context.skipStep(step.id, 'Condition not met');
return;
}
// Check dependencies
const missingDeps = step.dependsOn.filter(dep => !context.isStepCompleted(dep));
if (missingDeps.length > 0) {
throw new WorkflowError(`Step ${step.id} has unmet dependencies: ${missingDeps.join(', ')}`);
}
// Execute with retry policy
const retryPolicy = step.retryPolicy || { maxAttempts: 1 };
let lastError: Error | null = null;
for (let attempt = 1; attempt <= retryPolicy.maxAttempts; attempt++) {
try {
const result = await this.commandRegistry.executeCommand(step.command, step.args);
context.completeStep(step.id, result);
return;
} catch (error) {
lastError = error as Error;
if (attempt < retryPolicy.maxAttempts) {
await this.delay(retryPolicy.backoffMs || 1000);
}
}
}
throw new WorkflowError(`Step ${step.id} failed after ${retryPolicy.maxAttempts} attempts: ${lastError?.message}`);
}
}
Performance Optimization
Command Performance Monitoring
// src/cli/performance/command-performance.ts
export class CommandPerformanceMonitor {
private metrics = new Map<string, CommandMetrics>();
async measureCommand<T>(
commandName: string,
executor: () => Promise<T>
): Promise<T> {
const start = performance.now();
const memBefore = process.memoryUsage();
try {
const result = await executor();
const end = performance.now();
const memAfter = process.memoryUsage();
this.recordMetrics(commandName, {
executionTime: end - start,
memoryDelta: memAfter.heapUsed - memBefore.heapUsed,
success: true
});
return result;
} catch (error) {
const end = performance.now();
this.recordMetrics(commandName, {
executionTime: end - start,
memoryDelta: 0,
success: false,
error: error as Error
});
throw error;
}
}
private recordMetrics(command: string, measurement: PerformanceMeasurement): void {
if (!this.metrics.has(command)) {
this.metrics.set(command, new CommandMetrics(command));
}
const metrics = this.metrics.get(command)!;
metrics.addMeasurement(measurement);
// Alert if performance degrades
if (metrics.getP95ExecutionTime() > 5000) { // 5 seconds
console.warn(`⚠️ Command '${command}' is performing slowly (P95: ${metrics.getP95ExecutionTime()}ms)`);
}
}
getCommandReport(command: string): PerformanceReport {
const metrics = this.metrics.get(command);
if (!metrics) {
throw new Error(`No metrics found for command: ${command}`);
}
return {
command,
totalExecutions: metrics.getTotalExecutions(),
successRate: metrics.getSuccessRate(),
avgExecutionTime: metrics.getAverageExecutionTime(),
p95ExecutionTime: metrics.getP95ExecutionTime(),
avgMemoryUsage: metrics.getAverageMemoryUsage(),
recommendations: this.generateRecommendations(metrics)
};
}
}
Smart Auto-completion
Intelligent Command Completion
// src/cli/completion/intelligent-completion.ts
export class IntelligentCompletion {
constructor(
private learningService: LearningService,
private commandRegistry: ModularCommandRegistry
) {}
async generateCompletions(
partial: string,
context: CompletionContext
): Promise<Completion[]> {
const completions: Completion[] = [];
// 1. Exact command matches
const exactMatches = this.commandRegistry.findCommandsByPrefix(partial);
completions.push(...exactMatches.map(cmd => ({
value: cmd.name,
description: cmd.description,
type: 'command',
confidence: 1.0
})));
// 2. Learning-based suggestions
const learnedSuggestions = await this.learningService.suggestCommands(
partial,
context
);
completions.push(...learnedSuggestions);
// 3. Context-aware suggestions
const contextualSuggestions = await this.generateContextualSuggestions(
partial,
context
);
completions.push(...contextualSuggestions);
// Sort by confidence and relevance
return completions
.sort((a, b) => b.confidence - a.confidence)
.slice(0, 10); // Top 10 suggestions
}
private async generateContextualSuggestions(
partial: string,
context: CompletionContext
): Promise<Completion[]> {
const suggestions: Completion[] = [];
// If in git repository, suggest git-related commands
if (context.isGitRepository) {
if (partial.startsWith('git')) {
suggestions.push({
value: 'git commit',
description: 'Create git commit with generated message',
type: 'workflow',
confidence: 0.8
});
}
}
// If package.json exists, suggest npm commands
if (context.hasPackageJson) {
if (partial.startsWith('npm') || partial.startsWith('swarm')) {
suggestions.push({
value: 'swarm init',
description: 'Initialize swarm for this project',
type: 'workflow',
confidence: 0.9
});
}
}
return suggestions;
}
}
Success Metrics
CLI Performance Targets
- Command Response: <200ms average command execution time
- File Decomposition: index.ts (108KB) → <10KB per command module
- Interactive UX: Smart prompts with context awareness
- Hook Integration: Deep lifecycle integration with learning
- Workflow Automation: Intelligent multi-step command orchestration
- Auto-completion: >90% accuracy for command suggestions
User Experience Improvements
const cliImprovements = {
before: {
commandResponse: '~500ms',
interactivity: 'Basic command parsing',
workflows: 'Manual command chaining',
suggestions: 'Static help text'
},
after: {
commandResponse: '<200ms with caching',
interactivity: 'Smart context-aware prompts',
workflows: 'Automated multi-step execution',
suggestions: 'Learning-based intelligent completion'
}
};
Related V3 Skills
v3-core-implementation- Core domain integrationv3-memory-unification- Memory-backed command cachingv3-swarm-coordination- CLI swarm management integrationv3-performance-optimization- CLI performance monitoring
Usage Examples
Complete CLI Modernization
# Full CLI modernization implementation
Task("CLI modernization implementation",
"Implement modular commands, interactive prompts, and intelligent workflows",
"cli-hooks-developer")
Interactive Command Enhancement
# Enhanced interactive commands
claude-flow swarm init --interactive
claude-flow learning start --guided
claude-flow workflow create --from-intent "setup new project"
More by ruvnet
View allCreate and train AI learning plugins with AgentDB's 9 reinforcement learning algorithms. Includes Decision Transformer, Q-Learning, SARSA, Actor-Critic, and more. Use when building self-learning agents, implementing RL, or optimizing agent behavior through experience.
Domain-Driven Design architecture for claude-flow v3. Implements modular, bounded context architecture with clean separation of concerns and microkernel pattern.
Cloud-based AI swarm deployment and event-driven workflow automation with Flow Nexus platform
Comprehensive performance analysis, bottleneck detection, and optimization recommendations for Claude Flow swarms
