mrgoonie

scale-game

@mrgoonie/scale-game
mrgoonie
1,108
227 forks
Updated 1/6/2026
View on GitHub

Test at extremes (1000x bigger/smaller, instant/year-long) to expose fundamental truths hidden at normal scales

Installation

$skills install @mrgoonie/scale-game
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Path.claude/skills/problem-solving/scale-game/SKILL.md
Branchmain
Scoped Name@mrgoonie/scale-game

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: Scale Game description: Test at extremes (1000x bigger/smaller, instant/year-long) to expose fundamental truths hidden at normal scales when_to_use: when uncertain about scalability, edge cases unclear, or validating architecture for production volumes version: 1.1.0

Scale Game

Overview

Test your approach at extreme scales to find what breaks and what surprisingly survives.

Core principle: Extremes expose fundamental truths hidden at normal scales.

Quick Reference

Scale DimensionTest At ExtremesWhat It Reveals
Volume1 item vs 1B itemsAlgorithmic complexity limits
SpeedInstant vs 1 yearAsync requirements, caching needs
Users1 user vs 1B usersConcurrency issues, resource limits
DurationMilliseconds vs yearsMemory leaks, state growth
Failure rateNever fails vs always failsError handling adequacy

Process

  1. Pick dimension - What could vary extremely?
  2. Test minimum - What if this was 1000x smaller/faster/fewer?
  3. Test maximum - What if this was 1000x bigger/slower/more?
  4. Note what breaks - Where do limits appear?
  5. Note what survives - What's fundamentally sound?

Examples

Example 1: Error Handling

Normal scale: "Handle errors when they occur" works fine At 1B scale: Error volume overwhelms logging, crashes system Reveals: Need to make errors impossible (type systems) or expect them (chaos engineering)

Example 2: Synchronous APIs

Normal scale: Direct function calls work At global scale: Network latency makes synchronous calls unusable Reveals: Async/messaging becomes survival requirement, not optimization

Example 3: In-Memory State

Normal duration: Works for hours/days At years: Memory grows unbounded, eventual crash Reveals: Need persistence or periodic cleanup, can't rely on memory

Red Flags You Need This

  • "It works in dev" (but will it work in production?)
  • No idea where limits are
  • "Should scale fine" (without testing)
  • Surprised by production behavior

Remember

  • Extremes reveal fundamentals
  • What works at one scale fails at another
  • Test both directions (bigger AND smaller)
  • Use insights to validate architecture early

More by mrgoonie

View all
ai-multimodal
1,108

Process and generate multimedia content using Google Gemini API. Capabilities include analyze audio files (transcription with timestamps, summarization, speech understanding, music/sound analysis up to 9.5 hours), understand images (captioning, object detection, OCR, visual Q&A, segmentation), process videos (scene detection, Q&A, temporal analysis, YouTube URLs, up to 6 hours), extract from documents (PDF tables, forms, charts, diagrams, multi-page), generate images (text-to-image, editing, composition, refinement). Use when working with audio/video files, analyzing images or screenshots, processing PDF documents, extracting structured data from media, creating images from text prompts, or implementing multimodal AI features. Supports multiple models (Gemini 2.5/2.0) with context windows up to 2M tokens.

root-cause-tracing
1,108

Systematically trace bugs backward through call stack to find original trigger

databases
1,108

Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.

chrome-devtools
1,108

Browser automation, debugging, and performance analysis using Puppeteer CLI scripts. Use for automating browsers, taking screenshots, analyzing performance, monitoring network traffic, web scraping, form automation, and JavaScript debugging.