Systematically trace bugs backward through call stack to find original trigger
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: Root Cause Tracing description: Systematically trace bugs backward through call stack to find original trigger when_to_use: when errors occur deep in execution and you need to trace back to find the original trigger version: 1.1.0 languages: all
Root Cause Tracing
Overview
Bugs often manifest deep in the call stack (git init in wrong directory, file created in wrong location, database opened with wrong path). Your instinct is to fix where the error appears, but that's treating a symptom.
Core principle: Trace backward through the call chain until you find the original trigger, then fix at the source.
When to Use
digraph when_to_use {
"Bug appears deep in stack?" [shape=diamond];
"Can trace backwards?" [shape=diamond];
"Fix at symptom point" [shape=box];
"Trace to original trigger" [shape=box];
"BETTER: Also add defense-in-depth" [shape=box];
"Bug appears deep in stack?" -> "Can trace backwards?" [label="yes"];
"Can trace backwards?" -> "Trace to original trigger" [label="yes"];
"Can trace backwards?" -> "Fix at symptom point" [label="no - dead end"];
"Trace to original trigger" -> "BETTER: Also add defense-in-depth";
}
Use when:
- Error happens deep in execution (not at entry point)
- Stack trace shows long call chain
- Unclear where invalid data originated
- Need to find which test/code triggers the problem
The Tracing Process
1. Observe the Symptom
Error: git init failed in /Users/jesse/project/packages/core
2. Find Immediate Cause
What code directly causes this?
await execFileAsync('git', ['init'], { cwd: projectDir });
3. Ask: What Called This?
WorktreeManager.createSessionWorktree(projectDir, sessionId)
→ called by Session.initializeWorkspace()
→ called by Session.create()
→ called by test at Project.create()
4. Keep Tracing Up
What value was passed?
projectDir = ''(empty string!)- Empty string as
cwdresolves toprocess.cwd() - That's the source code directory!
5. Find Original Trigger
Where did empty string come from?
const context = setupCoreTest(); // Returns { tempDir: '' }
Project.create('name', context.tempDir); // Accessed before beforeEach!
Adding Stack Traces
When you can't trace manually, add instrumentation:
// Before the problematic operation
async function gitInit(directory: string) {
const stack = new Error().stack;
console.error('DEBUG git init:', {
directory,
cwd: process.cwd(),
nodeEnv: process.env.NODE_ENV,
stack,
});
await execFileAsync('git', ['init'], { cwd: directory });
}
Critical: Use console.error() in tests (not logger - may not show)
Run and capture:
npm test 2>&1 | grep 'DEBUG git init'
Analyze stack traces:
- Look for test file names
- Find the line number triggering the call
- Identify the pattern (same test? same parameter?)
Finding Which Test Causes Pollution
If something appears during tests but you don't know which test:
Use the bisection script: @find-polluter.sh
./find-polluter.sh '.git' 'src/**/*.test.ts'
Runs tests one-by-one, stops at first polluter. See script for usage.
Real Example: Empty projectDir
Symptom: .git created in packages/core/ (source code)
Trace chain:
git initruns inprocess.cwd()← empty cwd parameter- WorktreeManager called with empty projectDir
- Session.create() passed empty string
- Test accessed
context.tempDirbefore beforeEach - setupCoreTest() returns
{ tempDir: '' }initially
Root cause: Top-level variable initialization accessing empty value
Fix: Made tempDir a getter that throws if accessed before beforeEach
Also added defense-in-depth:
- Layer 1: Project.create() validates directory
- Layer 2: WorkspaceManager validates not empty
- Layer 3: NODE_ENV guard refuses git init outside tmpdir
- Layer 4: Stack trace logging before git init
Key Principle
digraph principle {
"Found immediate cause" [shape=ellipse];
"Can trace one level up?" [shape=diamond];
"Trace backwards" [shape=box];
"Is this the source?" [shape=diamond];
"Fix at source" [shape=box];
"Add validation at each layer" [shape=box];
"Bug impossible" [shape=doublecircle];
"NEVER fix just the symptom" [shape=octagon, style=filled, fillcolor=red, fontcolor=white];
"Found immediate cause" -> "Can trace one level up?";
"Can trace one level up?" -> "Trace backwards" [label="yes"];
"Can trace one level up?" -> "NEVER fix just the symptom" [label="no"];
"Trace backwards" -> "Is this the source?";
"Is this the source?" -> "Trace backwards" [label="no - keeps going"];
"Is this the source?" -> "Fix at source" [label="yes"];
"Fix at source" -> "Add validation at each layer";
"Add validation at each layer" -> "Bug impossible";
}
NEVER fix just where the error appears. Trace back to find the original trigger.
Stack Trace Tips
In tests: Use console.error() not logger - logger may be suppressed
Before operation: Log before the dangerous operation, not after it fails
Include context: Directory, cwd, environment variables, timestamps
Capture stack: new Error().stack shows complete call chain
Real-World Impact
From debugging session (2025-10-03):
- Found root cause through 5-level trace
- Fixed at source (getter validation)
- Added 4 layers of defense
- 1847 tests passed, zero pollution
More by mrgoonie
View allProcess and generate multimedia content using Google Gemini API. Capabilities include analyze audio files (transcription with timestamps, summarization, speech understanding, music/sound analysis up to 9.5 hours), understand images (captioning, object detection, OCR, visual Q&A, segmentation), process videos (scene detection, Q&A, temporal analysis, YouTube URLs, up to 6 hours), extract from documents (PDF tables, forms, charts, diagrams, multi-page), generate images (text-to-image, editing, composition, refinement). Use when working with audio/video files, analyzing images or screenshots, processing PDF documents, extracting structured data from media, creating images from text prompts, or implementing multimodal AI features. Supports multiple models (Gemini 2.5/2.0) with context windows up to 2M tokens.
Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.
Browser automation, debugging, and performance analysis using Puppeteer CLI scripts. Use for automating browsers, taking screenshots, analyzing performance, monitoring network traffic, web scraping, form automation, and JavaScript debugging.
Manage Model Context Protocol (MCP) servers - discover, analyze, and execute tools/prompts/resources from configured MCP servers. Use when working with MCP integrations, need to discover available MCP capabilities, filter MCP tools for specific tasks, execute MCP tools programmatically, access MCP prompts/resources, or implement MCP client functionality. Supports intelligent tool selection, multi-server management, and context-efficient capability discovery.