mrgoonie

docs-seeker

@mrgoonie/docs-seeker
mrgoonie
1,108
227 forks
Updated 1/6/2026
View on GitHub

Searching internet for technical documentation using llms.txt standard, GitHub repositories via Repomix, and parallel exploration. Use when user needs: (1) Latest documentation for libraries/frameworks, (2) Documentation in llms.txt format, (3) GitHub repository analysis, (4) Documentation without direct llms.txt support, (5) Multiple documentation sources in parallel

Installation

$skills install @mrgoonie/docs-seeker
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Path.claude/skills/docs-seeker/SKILL.md
Branchmain
Scoped Name@mrgoonie/docs-seeker

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: docs-seeker description: "Searching internet for technical documentation using llms.txt standard, GitHub repositories via Repomix, and parallel exploration. Use when user needs: (1) Latest documentation for libraries/frameworks, (2) Documentation in llms.txt format, (3) GitHub repository analysis, (4) Documentation without direct llms.txt support, (5) Multiple documentation sources in parallel" version: 1.0.0

Documentation Discovery & Analysis

Overview

Intelligent discovery and analysis of technical documentation through multiple strategies:

  1. llms.txt-first: Search for standardized AI-friendly documentation
  2. Repository analysis: Use Repomix to analyze GitHub repositories
  3. Parallel exploration: Deploy multiple Explorer agents for comprehensive coverage
  4. Fallback research: Use Researcher agents when other methods unavailable

Core Workflow

Phase 1: Initial Discovery

  1. Identify target

    • Extract library/framework name from user request
    • Note version requirements (default: latest)
    • Clarify scope if ambiguous
    • Identify if target is GitHub repository or website
  2. Search for llms.txt (PRIORITIZE context7.com)

    First: Try context7.com patterns

    For GitHub repositories:

    Pattern: https://context7.com/{org}/{repo}/llms.txt
    Examples:
    - https://github.com/imagick/imagick → https://context7.com/imagick/imagick/llms.txt
    - https://github.com/vercel/next.js → https://context7.com/vercel/next.js/llms.txt
    - https://github.com/better-auth/better-auth → https://context7.com/better-auth/better-auth/llms.txt
    

    For websites:

    Pattern: https://context7.com/websites/{normalized-domain-path}/llms.txt
    Examples:
    - https://docs.imgix.com/ → https://context7.com/websites/imgix/llms.txt
    - https://docs.byteplus.com/en/docs/ModelArk/ → https://context7.com/websites/byteplus_en_modelark/llms.txt
    - https://docs.haystack.deepset.ai/docs → https://context7.com/websites/haystack_deepset_ai/llms.txt
    - https://ffmpeg.org/doxygen/8.0/ → https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt
    

    Topic-specific searches (when user asks about specific feature):

    Pattern: https://context7.com/{path}/llms.txt?topic={query}
    Examples:
    - https://context7.com/shadcn-ui/ui/llms.txt?topic=date
    - https://context7.com/shadcn-ui/ui/llms.txt?topic=button
    - https://context7.com/vercel/next.js/llms.txt?topic=cache
    - https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt?topic=compress
    

    Fallback: Traditional llms.txt search

    WebSearch: "[library name] llms.txt site:[docs domain]"
    

    Common patterns:

    • https://docs.[library].com/llms.txt
    • https://[library].dev/llms.txt
    • https://[library].io/llms.txt

    → Found? Proceed to Phase 2 → Not found? Proceed to Phase 3

Phase 2: llms.txt Processing

Single URL:

  • WebFetch to retrieve content
  • Extract and present information

Multiple URLs (3+):

  • CRITICAL: Launch multiple Explorer agents in parallel
  • One agent per major documentation section (max 5 in first batch)
  • Each agent reads assigned URLs
  • Aggregate findings into consolidated report

Example:

Launch 3 Explorer agents simultaneously:
- Agent 1: getting-started.md, installation.md
- Agent 2: api-reference.md, core-concepts.md
- Agent 3: examples.md, best-practices.md

Phase 3: Repository Analysis

When llms.txt not found:

  1. Find GitHub repository via WebSearch
  2. Use Repomix to pack repository:
    npm install -g repomix  # if needed
    git clone [repo-url] /tmp/docs-analysis
    cd /tmp/docs-analysis
    repomix --output repomix-output.xml
    
  3. Read repomix-output.xml and extract documentation

Repomix benefits:

  • Entire repository in single AI-friendly file
  • Preserves directory structure
  • Optimized for AI consumption

Phase 4: Fallback Research

When no GitHub repository exists:

  • Launch multiple Researcher agents in parallel
  • Focus areas: official docs, tutorials, API references, community guides
  • Aggregate findings into consolidated report

Agent Distribution Guidelines

  • 1-3 URLs: Single Explorer agent
  • 4-10 URLs: 3-5 Explorer agents (2-3 URLs each)
  • 11+ URLs: 5-7 Explorer agents (prioritize most relevant)

Version Handling

Latest (default):

  • Search without version specifier
  • Use current documentation paths

Specific version:

  • Include version in search: [library] v[version] llms.txt
  • Check versioned paths: /v[version]/llms.txt
  • For repositories: checkout specific tag/branch

Output Format

# Documentation for [Library] [Version]

## Source
- Method: [llms.txt / Repository / Research]
- URLs: [list of sources]
- Date accessed: [current date]

## Key Information
[Extracted relevant information organized by topic]

## Additional Resources
[Related links, examples, references]

## Notes
[Any limitations, missing information, or caveats]

Quick Reference

Tool selection:

  • WebSearch → Find llms.txt URLs, GitHub repositories
  • WebFetch → Read single documentation pages
  • Task (Explore) → Multiple URLs, parallel exploration
  • Task (Researcher) → Scattered documentation, diverse sources
  • Repomix → Complete codebase analysis

Popular llms.txt locations (try context7.com first):

Fallback to official sites if context7.com unavailable:

Error Handling

  • llms.txt not accessible → Try alternative domains → Repository analysis
  • Repository not found → Search official website → Use Researcher agents
  • Repomix fails → Try /docs directory only → Manual exploration
  • Multiple conflicting sources → Prioritize official → Note versions

Key Principles

  1. Prioritize context7.com for llms.txt — Most comprehensive and up-to-date aggregator
  2. Use topic parameters when applicable — Enables targeted searches with ?topic=...
  3. Use parallel agents aggressively — Faster results, better coverage
  4. Verify official sources as fallback — Use when context7.com unavailable
  5. Report methodology — Tell user which approach was used
  6. Handle versions explicitly — Don't assume latest

Detailed Documentation

For comprehensive guides, examples, and best practices:

Workflows:

  • WORKFLOWS.md — Detailed workflow examples and strategies

Reference guides:

More by mrgoonie

View all
ai-multimodal
1,108

Process and generate multimedia content using Google Gemini API. Capabilities include analyze audio files (transcription with timestamps, summarization, speech understanding, music/sound analysis up to 9.5 hours), understand images (captioning, object detection, OCR, visual Q&A, segmentation), process videos (scene detection, Q&A, temporal analysis, YouTube URLs, up to 6 hours), extract from documents (PDF tables, forms, charts, diagrams, multi-page), generate images (text-to-image, editing, composition, refinement). Use when working with audio/video files, analyzing images or screenshots, processing PDF documents, extracting structured data from media, creating images from text prompts, or implementing multimodal AI features. Supports multiple models (Gemini 2.5/2.0) with context windows up to 2M tokens.

root-cause-tracing
1,108

Systematically trace bugs backward through call stack to find original trigger

databases
1,108

Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.

chrome-devtools
1,108

Browser automation, debugging, and performance analysis using Puppeteer CLI scripts. Use for automating browsers, taking screenshots, analyzing performance, monitoring network traffic, web scraping, form automation, and JavaScript debugging.