Master context engineering for AI agent systems. Use when designing agent architectures, debugging context failures, optimizing token usage, implementing memory systems, building multi-agent coordination, evaluating agent performance, or developing LLM-powered pipelines. Covers context fundamentals, degradation patterns, optimization techniques (compaction, masking, caching), compression strategies, memory architectures, multi-agent patterns, LLM-as-Judge evaluation, tool design, and project development.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: context-engineering description: >- Master context engineering for AI agent systems. Use when designing agent architectures, debugging context failures, optimizing token usage, implementing memory systems, building multi-agent coordination, evaluating agent performance, or developing LLM-powered pipelines. Covers context fundamentals, degradation patterns, optimization techniques (compaction, masking, caching), compression strategies, memory architectures, multi-agent patterns, LLM-as-Judge evaluation, tool design, and project development. version: 1.0.0
Context Engineering
Context engineering curates the smallest high-signal token set for LLM tasks. The goal: maximize reasoning quality while minimizing token usage.
When to Activate
- Designing/debugging agent systems
- Context limits constrain performance
- Optimizing cost/latency
- Building multi-agent coordination
- Implementing memory systems
- Evaluating agent performance
- Developing LLM-powered pipelines
Core Principles
- Context quality > quantity - High-signal tokens beat exhaustive content
- Attention is finite - U-shaped curve favors beginning/end positions
- Progressive disclosure - Load information just-in-time
- Isolation prevents degradation - Partition work across sub-agents
- Measure before optimizing - Know your baseline
Quick Reference
| Topic | When to Use | Reference |
|---|---|---|
| Fundamentals | Understanding context anatomy, attention mechanics | context-fundamentals.md |
| Degradation | Debugging failures, lost-in-middle, poisoning | context-degradation.md |
| Optimization | Compaction, masking, caching, partitioning | context-optimization.md |
| Compression | Long sessions, summarization strategies | context-compression.md |
| Memory | Cross-session persistence, knowledge graphs | memory-systems.md |
| Multi-Agent | Coordination patterns, context isolation | multi-agent-patterns.md |
| Evaluation | Testing agents, LLM-as-Judge, metrics | evaluation.md |
| Tool Design | Tool consolidation, description engineering | tool-design.md |
| Pipelines | Project development, batch processing | project-development.md |
Key Metrics
- Token utilization: Warning at 70%, trigger optimization at 80%
- Token variance: Explains 80% of agent performance variance
- Multi-agent cost: ~15x single agent baseline
- Compaction target: 50-70% reduction, <5% quality loss
- Cache hit target: 70%+ for stable workloads
Four-Bucket Strategy
- Write: Save context externally (scratchpads, files)
- Select: Pull only relevant context (retrieval, filtering)
- Compress: Reduce tokens while preserving info (summarization)
- Isolate: Split across sub-agents (partitioning)
Anti-Patterns
- Exhaustive context over curated context
- Critical info in middle positions
- No compaction triggers before limits
- Single agent for parallelizable tasks
- Tools without clear descriptions
Guidelines
- Place critical info at beginning/end of context
- Implement compaction at 70-80% utilization
- Use sub-agents for context isolation, not role-play
- Design tools with 4-question framework (what, when, inputs, returns)
- Optimize for tokens-per-task, not tokens-per-request
- Validate with probe-based evaluation
- Monitor KV-cache hit rates in production
- Start minimal, add complexity only when proven necessary
Scripts
- context_analyzer.py - Context health analysis, degradation detection
- compression_evaluator.py - Compression quality evaluation
More by mrgoonie
View allProcess and generate multimedia content using Google Gemini API. Capabilities include analyze audio files (transcription with timestamps, summarization, speech understanding, music/sound analysis up to 9.5 hours), understand images (captioning, object detection, OCR, visual Q&A, segmentation), process videos (scene detection, Q&A, temporal analysis, YouTube URLs, up to 6 hours), extract from documents (PDF tables, forms, charts, diagrams, multi-page), generate images (text-to-image, editing, composition, refinement). Use when working with audio/video files, analyzing images or screenshots, processing PDF documents, extracting structured data from media, creating images from text prompts, or implementing multimodal AI features. Supports multiple models (Gemini 2.5/2.0) with context windows up to 2M tokens.
Systematically trace bugs backward through call stack to find original trigger
Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.
Browser automation, debugging, and performance analysis using Puppeteer CLI scripts. Use for automating browsers, taking screenshots, analyzing performance, monitoring network traffic, web scraping, form automation, and JavaScript debugging.