Execute Python code locally with marketplace API access for 90%+ token savings on bulk operations. Activates when user requests bulk operations (10+ files), complex multi-step workflows, iterative processing, or mentions efficiency/performance.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: code-execution description: Execute Python code locally with marketplace API access for 90%+ token savings on bulk operations. Activates when user requests bulk operations (10+ files), complex multi-step workflows, iterative processing, or mentions efficiency/performance.
Code Execution
Execute Python locally with API access. 90-99% token savings for bulk operations.
When to Use
- Bulk operations (10+ files)
- Complex multi-step workflows
- Iterative processing across many files
- User mentions efficiency/performance
How to Use
Use direct Python imports in Claude Code:
from execution_runtime import fs, code, transform, git
# Code analysis (metadata only!)
functions = code.find_functions('app.py', pattern='handle_.*')
# File operations
code_block = fs.copy_lines('source.py', 10, 20)
fs.paste_code('target.py', 50, code_block)
# Bulk transformations
result = transform.rename_identifier('.', 'oldName', 'newName', '**/*.py')
# Git operations
git.git_add(['.'])
git.git_commit('feat: refactor code')
If not installed: Run ~/.claude/plugins/marketplaces/mhattingpete-claude-skills/execution-runtime/setup.sh
Available APIs
- Filesystem (
fs): copy_lines, paste_code, search_replace, batch_copy - Code Analysis (
code): find_functions, find_classes, analyze_dependencies - returns METADATA only! - Transformations (
transform): rename_identifier, remove_debug_statements, batch_refactor - Git (
git): git_status, git_add, git_commit, git_push
Pattern
- Analyze locally (metadata only, not source)
- Process locally (all operations in execution)
- Return summary (not data!)
Examples
Bulk refactor (50 files):
from execution_runtime import transform
result = transform.rename_identifier('.', 'oldName', 'newName', '**/*.py')
# Returns: {'files_modified': 50, 'total_replacements': 247}
Extract functions:
from execution_runtime import code, fs
functions = code.find_functions('app.py', pattern='.*_util$') # Metadata only!
for func in functions:
code_block = fs.copy_lines('app.py', func['start_line'], func['end_line'])
fs.paste_code('utils.py', -1, code_block)
result = {'functions_moved': len(functions)}
Code audit (100 files):
from execution_runtime import code
from pathlib import Path
files = list(Path('.').glob('**/*.py'))
issues = []
for file in files:
deps = code.analyze_dependencies(str(file)) # Metadata only!
if deps.get('complexity', 0) > 15:
issues.append({'file': str(file), 'complexity': deps['complexity']})
result = {'files_audited': len(files), 'high_complexity': len(issues)}
Best Practices
✅ Return summaries, not data ✅ Use code_analysis (returns metadata, not source) ✅ Batch operations ✅ Handle errors, return error count
❌ Don't return all code to context ❌ Don't read full source when you need metadata ❌ Don't process files one by one
Token Savings
| Files | Traditional | Execution | Savings |
|---|---|---|---|
| 10 | 5K tokens | 500 | 90% |
| 50 | 25K tokens | 600 | 97.6% |
| 100 | 150K tokens | 1K | 99.3% |
More by mhattingpete
View allAnalyze files and get detailed metadata including size, line counts, modification times, and content statistics. Use when users request file information, statistics, or analysis without modifying files.
Analyzes your Claude Code conversation history to identify patterns, common mistakes, and opportunities for workflow improvement. Use when user wants to understand usage patterns, optimize workflow, identify automation opportunities, or check if they're following best practices.
Perform bulk code refactoring operations like renaming variables/functions across files, replacing patterns, and updating API calls. Use when users request renaming identifiers, replacing deprecated code patterns, updating method calls, or making consistent changes across multiple locations.
Break down feature requests into detailed, implementable plans with clear tasks. Use when user requests a new feature, enhancement, or complex change.
