Perform RFM (Recency, Frequency, Monetary) customer segmentation analysis on e-commerce data. Use when you need to analyze customer value, identify VIP customers, or create marketing segments. Automatically cleans data, calculates RFM metrics, applies K-means clustering, and generates visualization reports with Chinese language support.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: rfm-customer-segmentation description: Perform RFM (Recency, Frequency, Monetary) customer segmentation analysis on e-commerce data. Use when you need to analyze customer value, identify VIP customers, or create marketing segments. Automatically cleans data, calculates RFM metrics, applies K-means clustering, and generates visualization reports with Chinese language support. allowed-tools: Read, Write, Bash, Glob
RFM Customer Segmentation Analysis
A comprehensive customer segmentation skill that automatically analyzes e-commerce transaction data to identify customer value segments using RFM (Recency, Frequency, Monetary) analysis with K-means clustering.
Instructions
1. Data Analysis
When users provide e-commerce data or ask about customer segmentation:
- Load and validate the transaction data
- Clean data by removing invalid orders (negative quantities, zero prices)
- Calculate RFM metrics for each customer:
- Recency: Days since last purchase
- Frequency: Number of purchases
- Monetary: Total purchase amount
- Use K-means clustering on RFM dimensions
- Automatically determine optimal number of clusters using elbow method
2. Customer Segmentation
- Create customer value segments: High, Medium, Low value customers
- Score each customer on RFM dimensions (1-3 scale)
- Calculate overall customer value scores
- Identify and rank VIP customers for marketing campaigns
3. Visualization and Reporting
- Generate comprehensive customer segmentation dashboard
- Create pie charts for segment distribution and revenue share
- Build RFM scatter plots to visualize customer patterns
- Generate box plots showing value distribution by segment
- Export detailed CSV reports with VIP customer lists
4. Marketing Insights
- Provide actionable marketing recommendations for each segment
- Generate executive summary with key findings
- Create customer activation strategies for different value tiers
- Export VIP customer lists for targeted marketing campaigns
Usage Examples
Basic Customer Segmentation
Analyze these e-commerce orders and segment customers by value:
[CSV data with order_id, user_id, purchase_date, quantity, unit_price]
VIP Customer Identification
Find the top 100 most valuable customers from our sales data for marketing campaign
Customer Value Analysis
Create a customer segmentation report showing revenue contribution by customer segment
Key Features
- Automatic Data Cleaning: Handles Chinese e-commerce data formats, removes invalid orders
- Intelligent Clustering: Uses elbow method to determine optimal cluster count
- Chinese Language Support: Full support for Chinese field names and visualizations
- Comprehensive Reports: Generates HTML reports, PNG dashboards, and CSV exports
- Marketing Ready: Provides VIP customer lists and actionable insights
File Requirements
The skill works with e-commerce transaction data containing:
- user_id: Customer identification code (用户码)
- order_date: Purchase date (消费日期)
- quantity: Order quantity (数量)
- unit_price: Item unit price (单价)
- product_info: Product details (optional)
Output Files Generated
customer_segments.csv: Complete customer segmentation datavip_customers_list.csv: Ranked VIP customer list for marketingsegment_summary_statistics.csv: Detailed statistics by segmentcustomer_segmentation_dashboard.png: Visual analytics dashboarddata_validation_report.txt: Data quality and analysis validation
Dependencies
- pandas, numpy for data processing
- scikit-learn for K-means clustering
- matplotlib, seaborn for visualization (with Chinese font support)
- Standard Python libraries for file operations
Best Practices
- Ensure date fields are in consistent format (YYYY-MM-DD recommended)
- Remove or handle missing values before analysis
- Use sufficient data volume (1000+ orders recommended for reliable clustering)
- Consider business context when interpreting segment results
- Validate results with domain knowledge when possible
More by liangdabiao
View all将多个研究智能体的发现综合成连贯、结构化的研究报告。解决矛盾、提取共识、创建统一叙述。当多个研究智能体完成研究、需要将发现组合成统一报告、发现之间存在矛盾时使用此技能。
将原始研究问题细化为结构化的深度研究任务。通过提问澄清需求,生成符合 OpenAI/Google Deep Research 标准的结构化提示词。当用户提出研究问题、需要帮助定义研究范围、或想要生成结构化研究提示词时使用此技能。
验证研究报告中所有声明的引用准确性、来源质量和格式规范性。确保每个事实性声明都有可验证的来源,并提供来源质量评级。当最终确定研究报告、审查他人研究、发布或分享研究之前使用此技能。
Graph of Thoughts (GoT) Controller - 管理研究图状态,执行图操作(Generate, Aggregate, Refine, Score),优化研究路径质量。当研究主题复杂或多方面、需要策略性探索(深度 vs 广度)、高质量研究时使用此技能。
