Analyze user conversion funnels, calculate step-by-step conversion rates, create interactive visualizations, and identify optimization opportunities. Use when working with multi-step user journey data, conversion analysis, or when user mentions funnels, conversion rates, or user flow analysis.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: funnel-analysis description: Analyze user conversion funnels, calculate step-by-step conversion rates, create interactive visualizations, and identify optimization opportunities. Use when working with multi-step user journey data, conversion analysis, or when user mentions funnels, conversion rates, or user flow analysis. allowed-tools: Read, Write, Edit, Bash, Grep, Glob
Funnel Analysis Skill
Analyze user behavior through multi-step conversion funnels to identify bottlenecks and optimization opportunities in marketing campaigns, user journeys, and business processes.
Quick Start
This skill helps you:
- Build conversion funnels from multi-step user data
- Calculate conversion rates between each step
- Perform segmentation analysis by different user attributes
- Create interactive visualizations with Plotly
- Generate business insights and optimization recommendations
When to Use
- Marketing campaign analysis (promotion → purchase)
- User onboarding flow analysis
- Website conversion funnel optimization
- App user journey analysis
- Sales pipeline analysis
- Lead nurturing process analysis
Key Requirements
Install required packages:
pip install pandas plotly matplotlib numpy seaborn
Core Workflow
1. Data Preparation
Your data should include:
- User journey steps (clicks, page views, actions)
- User identifiers (customer_id, user_id, etc.)
- Timestamps or step indicators
- Optional: user attributes for segmentation (gender, device, location)
2. Analysis Process
- Load and merge user journey data
- Define funnel steps and calculate metrics
- Perform segmentations (by device, gender, etc.)
- Create visualizations
- Generate insights and recommendations
3. Output Deliverables
- Funnel visualization charts
- Conversion rate tables
- Segmented analysis reports
- Optimization recommendations
Example Usage Scenarios
E-commerce Purchase Funnel
# Steps: Promotion → Search → Product View → Add to Cart → Purchase
# Analyze by device type and customer segment
User Registration Funnel
# Steps: Landing Page → Sign Up → Email Verification → Profile Complete
# Identify where users drop off most
Content Consumption Funnel
# Steps: Article View → Comment → Share → Subscribe
# Measure engagement conversion rates
Common Analysis Patterns
- Bottleneck Identification: Find steps with highest drop-off rates
- Segment Comparison: Compare conversion across user groups
- Temporal Analysis: Track conversion over time
- A/B Testing: Compare different funnel variations
- Optimization Impact: Measure changes before/after improvements
Integration Examples
See examples/ directory for:
basic_funnel.py- Simple funnel analysissegmented_funnel.py- Advanced segmentation analysis- Sample datasets for testing
Best Practices
- Ensure data quality and consistency
- Define clear funnel steps
- Consider user journey time windows
- Validate statistical significance
- Focus on actionable insights
More by liangdabiao
View all将多个研究智能体的发现综合成连贯、结构化的研究报告。解决矛盾、提取共识、创建统一叙述。当多个研究智能体完成研究、需要将发现组合成统一报告、发现之间存在矛盾时使用此技能。
将原始研究问题细化为结构化的深度研究任务。通过提问澄清需求,生成符合 OpenAI/Google Deep Research 标准的结构化提示词。当用户提出研究问题、需要帮助定义研究范围、或想要生成结构化研究提示词时使用此技能。
验证研究报告中所有声明的引用准确性、来源质量和格式规范性。确保每个事实性声明都有可验证的来源,并提供来源质量评级。当最终确定研究报告、审查他人研究、发布或分享研究之前使用此技能。
Graph of Thoughts (GoT) Controller - 管理研究图状态,执行图操作(Generate, Aggregate, Refine, Score),优化研究路径质量。当研究主题复杂或多方面、需要策略性探索(深度 vs 广度)、高质量研究时使用此技能。
