jeremylongshore

windsurf-deploy-integration

@jeremylongshore/windsurf-deploy-integration
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Deploy Windsurf integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Windsurf-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy windsurf", "windsurf Vercel", "windsurf production deploy", "windsurf Cloud Run", "windsurf Fly.io".

Installation

$skills install @jeremylongshore/windsurf-deploy-integration
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/windsurf-pack/skills/windsurf-deploy-integration/SKILL.md
Branchmain
Scoped Name@jeremylongshore/windsurf-deploy-integration

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: windsurf-deploy-integration description: | Deploy Windsurf integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Windsurf-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy windsurf", "windsurf Vercel", "windsurf production deploy", "windsurf Cloud Run", "windsurf Fly.io". allowed-tools: Read, Write, Edit, Bash(vercel:), Bash(fly:), Bash(gcloud:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Windsurf Deploy Integration

Overview

Deploy Windsurf-powered applications to popular platforms with proper secrets management.

Prerequisites

  • Windsurf API keys for production environment
  • Platform CLI installed (vercel, fly, or gcloud)
  • Application code ready for deployment
  • Environment variables documented

Vercel Deployment

Environment Setup

# Add Windsurf secrets to Vercel
vercel secrets add windsurf_api_key sk_live_***
vercel secrets add windsurf_webhook_secret whsec_***

# Link to project
vercel link

# Deploy preview
vercel

# Deploy production
vercel --prod

vercel.json Configuration

{
  "env": {
    "WINDSURF_API_KEY": "@windsurf_api_key"
  },
  "functions": {
    "api/**/*.ts": {
      "maxDuration": 30
    }
  }
}

Fly.io Deployment

fly.toml

app = "my-windsurf-app"
primary_region = "iad"

[env]
  NODE_ENV = "production"

[http_service]
  internal_port = 3000
  force_https = true
  auto_stop_machines = true
  auto_start_machines = true

Secrets

# Set Windsurf secrets
fly secrets set WINDSURF_API_KEY=sk_live_***
fly secrets set WINDSURF_WEBHOOK_SECRET=whsec_***

# Deploy
fly deploy

Google Cloud Run

Dockerfile

FROM node:20-slim
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY . .
CMD ["npm", "start"]

Deploy Script

#!/bin/bash
# deploy-cloud-run.sh

PROJECT_ID="${GOOGLE_CLOUD_PROJECT}"
SERVICE_NAME="windsurf-service"
REGION="us-central1"

# Build and push image
gcloud builds submit --tag gcr.io/$PROJECT_ID/$SERVICE_NAME

# Deploy to Cloud Run
gcloud run deploy $SERVICE_NAME \
  --image gcr.io/$PROJECT_ID/$SERVICE_NAME \
  --region $REGION \
  --platform managed \
  --allow-unauthenticated \
  --set-secrets=WINDSURF_API_KEY=windsurf-api-key:latest

Environment Configuration Pattern

// config/windsurf.ts
interface WindsurfConfig {
  apiKey: string;
  environment: 'development' | 'staging' | 'production';
  webhookSecret?: string;
}

export function getWindsurfConfig(): WindsurfConfig {
  const env = process.env.NODE_ENV || 'development';

  return {
    apiKey: process.env.WINDSURF_API_KEY!,
    environment: env as WindsurfConfig['environment'],
    webhookSecret: process.env.WINDSURF_WEBHOOK_SECRET,
  };
}

Health Check Endpoint

// api/health.ts
export async function GET() {
  const windsurfStatus = await checkWindsurfConnection();

  return Response.json({
    status: windsurfStatus ? 'healthy' : 'degraded',
    services: {
      windsurf: windsurfStatus,
    },
    timestamp: new Date().toISOString(),
  });
}

Instructions

Step 1: Choose Deployment Platform

Select the platform that best fits your infrastructure needs and follow the platform-specific guide below.

Step 2: Configure Secrets

Store Windsurf API keys securely using the platform's secrets management.

Step 3: Deploy Application

Use the platform CLI to deploy your application with Windsurf integration.

Step 4: Verify Health

Test the health check endpoint to confirm Windsurf connectivity.

Output

  • Application deployed to production
  • Windsurf secrets securely configured
  • Health check endpoint functional
  • Environment-specific configuration in place

Error Handling

IssueCauseSolution
Secret not foundMissing configurationAdd secret via platform CLI
Deploy timeoutLarge buildIncrease build timeout
Health check failsWrong API keyVerify environment variable
Cold start issuesNo warm-upConfigure minimum instances

Examples

Quick Deploy Script

#!/bin/bash
# Platform-agnostic deploy helper
case "$1" in
  vercel)
    vercel secrets add windsurf_api_key "$WINDSURF_API_KEY"
    vercel --prod
    ;;
  fly)
    fly secrets set WINDSURF_API_KEY="$WINDSURF_API_KEY"
    fly deploy
    ;;
esac

Resources

Next Steps

For webhook handling, see windsurf-webhooks-events.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.