Deploy Windsurf integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Windsurf-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy windsurf", "windsurf Vercel", "windsurf production deploy", "windsurf Cloud Run", "windsurf Fly.io".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: windsurf-deploy-integration description: | Deploy Windsurf integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Windsurf-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy windsurf", "windsurf Vercel", "windsurf production deploy", "windsurf Cloud Run", "windsurf Fly.io". allowed-tools: Read, Write, Edit, Bash(vercel:), Bash(fly:), Bash(gcloud:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Windsurf Deploy Integration
Overview
Deploy Windsurf-powered applications to popular platforms with proper secrets management.
Prerequisites
- Windsurf API keys for production environment
- Platform CLI installed (vercel, fly, or gcloud)
- Application code ready for deployment
- Environment variables documented
Vercel Deployment
Environment Setup
# Add Windsurf secrets to Vercel
vercel secrets add windsurf_api_key sk_live_***
vercel secrets add windsurf_webhook_secret whsec_***
# Link to project
vercel link
# Deploy preview
vercel
# Deploy production
vercel --prod
vercel.json Configuration
{
"env": {
"WINDSURF_API_KEY": "@windsurf_api_key"
},
"functions": {
"api/**/*.ts": {
"maxDuration": 30
}
}
}
Fly.io Deployment
fly.toml
app = "my-windsurf-app"
primary_region = "iad"
[env]
NODE_ENV = "production"
[http_service]
internal_port = 3000
force_https = true
auto_stop_machines = true
auto_start_machines = true
Secrets
# Set Windsurf secrets
fly secrets set WINDSURF_API_KEY=sk_live_***
fly secrets set WINDSURF_WEBHOOK_SECRET=whsec_***
# Deploy
fly deploy
Google Cloud Run
Dockerfile
FROM node:20-slim
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY . .
CMD ["npm", "start"]
Deploy Script
#!/bin/bash
# deploy-cloud-run.sh
PROJECT_ID="${GOOGLE_CLOUD_PROJECT}"
SERVICE_NAME="windsurf-service"
REGION="us-central1"
# Build and push image
gcloud builds submit --tag gcr.io/$PROJECT_ID/$SERVICE_NAME
# Deploy to Cloud Run
gcloud run deploy $SERVICE_NAME \
--image gcr.io/$PROJECT_ID/$SERVICE_NAME \
--region $REGION \
--platform managed \
--allow-unauthenticated \
--set-secrets=WINDSURF_API_KEY=windsurf-api-key:latest
Environment Configuration Pattern
// config/windsurf.ts
interface WindsurfConfig {
apiKey: string;
environment: 'development' | 'staging' | 'production';
webhookSecret?: string;
}
export function getWindsurfConfig(): WindsurfConfig {
const env = process.env.NODE_ENV || 'development';
return {
apiKey: process.env.WINDSURF_API_KEY!,
environment: env as WindsurfConfig['environment'],
webhookSecret: process.env.WINDSURF_WEBHOOK_SECRET,
};
}
Health Check Endpoint
// api/health.ts
export async function GET() {
const windsurfStatus = await checkWindsurfConnection();
return Response.json({
status: windsurfStatus ? 'healthy' : 'degraded',
services: {
windsurf: windsurfStatus,
},
timestamp: new Date().toISOString(),
});
}
Instructions
Step 1: Choose Deployment Platform
Select the platform that best fits your infrastructure needs and follow the platform-specific guide below.
Step 2: Configure Secrets
Store Windsurf API keys securely using the platform's secrets management.
Step 3: Deploy Application
Use the platform CLI to deploy your application with Windsurf integration.
Step 4: Verify Health
Test the health check endpoint to confirm Windsurf connectivity.
Output
- Application deployed to production
- Windsurf secrets securely configured
- Health check endpoint functional
- Environment-specific configuration in place
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Secret not found | Missing configuration | Add secret via platform CLI |
| Deploy timeout | Large build | Increase build timeout |
| Health check fails | Wrong API key | Verify environment variable |
| Cold start issues | No warm-up | Configure minimum instances |
Examples
Quick Deploy Script
#!/bin/bash
# Platform-agnostic deploy helper
case "$1" in
vercel)
vercel secrets add windsurf_api_key "$WINDSURF_API_KEY"
vercel --prod
;;
fly)
fly secrets set WINDSURF_API_KEY="$WINDSURF_API_KEY"
fly deploy
;;
esac
Resources
Next Steps
For webhook handling, see windsurf-webhooks-events.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
