jeremylongshore

vertex-infra-expert

@jeremylongshore/vertex-infra-expert
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Execute use when provisioning Vertex AI infrastructure with Terraform. Trigger with phrases like "vertex ai terraform", "deploy gemini terraform", "model garden infrastructure", "vertex ai endpoints terraform", or "vector search terraform". Provisions Model Garden models, Gemini endpoints, vector search indices, ML pipelines, and production AI services with encryption and auto-scaling.

Installation

$skills install @jeremylongshore/vertex-infra-expert
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/devops/jeremy-vertex-terraform/skills/vertex-infra-expert/SKILL.md
Branchmain
Scoped Name@jeremylongshore/vertex-infra-expert

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: vertex-infra-expert description: | Execute use when provisioning Vertex AI infrastructure with Terraform. Trigger with phrases like "vertex ai terraform", "deploy gemini terraform", "model garden infrastructure", "vertex ai endpoints terraform", or "vector search terraform". Provisions Model Garden models, Gemini endpoints, vector search indices, ML pipelines, and production AI services with encryption and auto-scaling. allowed-tools: Read, Write, Edit, Grep, Glob, Bash(terraform:), Bash(gcloud:) version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Vertex Infra Expert

Overview

Provision Vertex AI infrastructure with Terraform (endpoints, deployed models, vector search indices, pipelines) with production guardrails: encryption, autoscaling, IAM least privilege, and operational validation steps. Use this skill to generate a minimal working Terraform baseline and iterate toward enterprise-ready deployments.

Prerequisites

Before using this skill, ensure:

  • Google Cloud project with Vertex AI API enabled
  • Terraform 1.0+ installed
  • gcloud CLI authenticated with appropriate permissions
  • Understanding of Vertex AI services and ML models
  • KMS keys created for encryption (if required)
  • GCS buckets for model artifacts and embeddings

Instructions

  1. Define AI Services: Identify required Vertex AI components (endpoints, vector search, pipelines)
  2. Configure Terraform: Set up backend and define project variables
  3. Provision Endpoints: Deploy Gemini or custom model endpoints with auto-scaling
  4. Set Up Vector Search: Create indices for embeddings with appropriate dimensions
  5. Configure Encryption: Apply KMS encryption to endpoints and data
  6. Implement Monitoring: Set up Cloud Monitoring for model performance
  7. Apply IAM Policies: Grant least privilege access to AI services
  8. Validate Deployment: Test endpoints and verify model availability

Output

Error Handling

See {baseDir}/references/errors.md for comprehensive error handling.

Examples

See {baseDir}/references/examples.md for detailed examples.

Resources

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.