Execute Vast.ai major re-architecture and migration strategies with strangler fig pattern. Use when migrating to or from Vast.ai, performing major version upgrades, or re-platforming existing integrations to Vast.ai. Trigger with phrases like "migrate vastai", "vastai migration", "switch to vastai", "vastai replatform", "vastai upgrade major".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: vastai-migration-deep-dive description: | Execute Vast.ai major re-architecture and migration strategies with strangler fig pattern. Use when migrating to or from Vast.ai, performing major version upgrades, or re-platforming existing integrations to Vast.ai. Trigger with phrases like "migrate vastai", "vastai migration", "switch to vastai", "vastai replatform", "vastai upgrade major". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(node:), Bash(kubectl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Vast.ai Migration Deep Dive
Overview
Comprehensive guide for migrating to or from Vast.ai, or major version upgrades.
Prerequisites
- Current system documentation
- Vast.ai SDK installed
- Feature flag infrastructure
- Rollback strategy tested
Migration Types
| Type | Complexity | Duration | Risk |
|---|---|---|---|
| Fresh install | Low | Days | Low |
| From competitor | Medium | Weeks | Medium |
| Major version | Medium | Weeks | Medium |
| Full replatform | High | Months | High |
Pre-Migration Assessment
Step 1: Current State Analysis
# Document current implementation
find . -name "*.ts" -o -name "*.py" | xargs grep -l "vastai" > vastai-files.txt
# Count integration points
wc -l vastai-files.txt
# Identify dependencies
npm list | grep vastai
pip freeze | grep vastai
Step 2: Data Inventory
interface MigrationInventory {
dataTypes: string[];
recordCounts: Record<string, number>;
dependencies: string[];
integrationPoints: string[];
customizations: string[];
}
async function assessVast.aiMigration(): Promise<MigrationInventory> {
return {
dataTypes: await getDataTypes(),
recordCounts: await getRecordCounts(),
dependencies: await analyzeDependencies(),
integrationPoints: await findIntegrationPoints(),
customizations: await documentCustomizations(),
};
}
Migration Strategy: Strangler Fig Pattern
Phase 1: Parallel Run
┌─────────────┐ ┌─────────────┐
│ Old │ │ New │
│ System │ ──▶ │ Vast.ai │
│ (100%) │ │ (0%) │
└─────────────┘ └─────────────┘
Phase 2: Gradual Shift
┌─────────────┐ ┌─────────────┐
│ Old │ │ New │
│ (50%) │ ──▶ │ (50%) │
└─────────────┘ └─────────────┘
Phase 3: Complete
┌─────────────┐ ┌─────────────┐
│ Old │ │ New │
│ (0%) │ ──▶ │ (100%) │
└─────────────┘ └─────────────┘
Implementation Plan
Phase 1: Setup (Week 1-2)
# Install Vast.ai SDK
npm install @vastai/sdk
# Configure credentials
cp .env.example .env.vastai
# Edit with new credentials
# Verify connectivity
node -e "require('@vastai/sdk').ping()"
Phase 2: Adapter Layer (Week 3-4)
// src/adapters/vastai.ts
interface ServiceAdapter {
create(data: CreateInput): Promise<Resource>;
read(id: string): Promise<Resource>;
update(id: string, data: UpdateInput): Promise<Resource>;
delete(id: string): Promise<void>;
}
class Vast.aiAdapter implements ServiceAdapter {
async create(data: CreateInput): Promise<Resource> {
const vastaiData = this.transform(data);
return vastaiClient.create(vastaiData);
}
private transform(data: CreateInput): Vast.aiInput {
// Map from old format to Vast.ai format
}
}
Phase 3: Data Migration (Week 5-6)
async function migrateVast.aiData(): Promise<MigrationResult> {
const batchSize = 100;
let processed = 0;
let errors: MigrationError[] = [];
for await (const batch of oldSystem.iterateBatches(batchSize)) {
try {
const transformed = batch.map(transform);
await vastaiClient.batchCreate(transformed);
processed += batch.length;
} catch (error) {
errors.push({ batch, error });
}
// Progress update
console.log(`Migrated ${processed} records`);
}
return { processed, errors };
}
Phase 4: Traffic Shift (Week 7-8)
// Feature flag controlled traffic split
function getServiceAdapter(): ServiceAdapter {
const vastaiPercentage = getFeatureFlag('vastai_migration_percentage');
if (Math.random() * 100 < vastaiPercentage) {
return new Vast.aiAdapter();
}
return new LegacyAdapter();
}
Rollback Plan
# Immediate rollback
kubectl set env deployment/app VASTAI_ENABLED=false
kubectl rollout restart deployment/app
# Data rollback (if needed)
./scripts/restore-from-backup.sh --date YYYY-MM-DD
# Verify rollback
curl https://app.yourcompany.com/health | jq '.services.vastai'
Post-Migration Validation
async function validateVast.aiMigration(): Promise<ValidationReport> {
const checks = [
{ name: 'Data count match', fn: checkDataCounts },
{ name: 'API functionality', fn: checkApiFunctionality },
{ name: 'Performance baseline', fn: checkPerformance },
{ name: 'Error rates', fn: checkErrorRates },
];
const results = await Promise.all(
checks.map(async c => ({ name: c.name, result: await c.fn() }))
);
return { checks: results, passed: results.every(r => r.result.success) };
}
Instructions
Step 1: Assess Current State
Document existing implementation and data inventory.
Step 2: Build Adapter Layer
Create abstraction layer for gradual migration.
Step 3: Migrate Data
Run batch data migration with error handling.
Step 4: Shift Traffic
Gradually route traffic to new Vast.ai integration.
Output
- Migration assessment complete
- Adapter layer implemented
- Data migrated successfully
- Traffic fully shifted to Vast.ai
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Data mismatch | Transform errors | Validate transform logic |
| Performance drop | No caching | Add caching layer |
| Rollback triggered | Errors spiked | Reduce traffic percentage |
| Validation failed | Missing data | Check batch processing |
Examples
Quick Migration Status
const status = await validateVast.aiMigration();
console.log(`Migration ${status.passed ? 'PASSED' : 'FAILED'}`);
status.checks.forEach(c => console.log(` ${c.name}: ${c.result.success}`));
Resources
Flagship+ Skills
For advanced troubleshooting, see vastai-advanced-troubleshooting.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
