Detect significant price movements and unusual volume across crypto markets. Calculates significance scores combining price change, volume ratio, and market cap. Use when tracking market movers, finding gainers/losers, or detecting volume spikes. Trigger with phrases like "scan market movers", "top gainers", "biggest losers", "volume spikes", "what's moving", "find pumps", or "market scan".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: scanning-market-movers description: | Detect significant price movements and unusual volume across crypto markets. Calculates significance scores combining price change, volume ratio, and market cap. Use when tracking market movers, finding gainers/losers, or detecting volume spikes. Trigger with phrases like "scan market movers", "top gainers", "biggest losers", "volume spikes", "what's moving", "find pumps", or "market scan". allowed-tools: Read, Write, Edit, Grep, Glob, Bash(python:*) version: 2.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT
Scanning Market Movers
Overview
Real-time detection and analysis of significant price movements and unusual volume patterns across cryptocurrency markets. This skill identifies top gainers, losers, and volume spikes, ranking them by a composite significance score.
Key Features:
- Scan 1,000+ cryptocurrencies for movers
- Configurable thresholds (change %, volume spike, market cap)
- Significance scoring for prioritization
- Category filtering (DeFi, L2, NFT, etc.)
- Multiple output formats (table, JSON, CSV)
Dependency:
This skill uses tracking-crypto-prices from market-price-tracker plugin for price data infrastructure.
Prerequisites
Install required dependencies:
pip install requests pandas
Dependency Setup:
Ensure market-price-tracker plugin is installed with tracking-crypto-prices skill configured.
Instructions
Step 1: Quick Market Scan
Run a default scan for top gainers and losers:
python {baseDir}/scripts/scanner.py
This returns the top 20 gainers and top 20 losers by 24h change with volume confirmation.
Step 2: Custom Thresholds
Scan with specific criteria:
# Only show moves > 10% with volume spike > 3x
python {baseDir}/scripts/scanner.py --min-change 10 --volume-spike 3
# Filter by market cap
python {baseDir}/scripts/scanner.py --min-cap 100000000 --max-cap 1000000000
Step 3: Category Filtering
Focus on specific sectors:
# DeFi tokens only
python {baseDir}/scripts/scanner.py --category defi
# Layer 2 tokens
python {baseDir}/scripts/scanner.py --category layer2
# Available: defi, layer2, nft, gaming, meme
Step 4: Different Timeframes
Scan across timeframes:
# 1-hour movers
python {baseDir}/scripts/scanner.py --timeframe 1h
# 7-day movers
python {baseDir}/scripts/scanner.py --timeframe 7d
Step 5: Export Results
Save results for analysis:
# JSON export
python {baseDir}/scripts/scanner.py --format json --output movers.json
# CSV export
python {baseDir}/scripts/scanner.py --format csv --output movers.csv
Output
Default Table Output
================================================================================
MARKET MOVERS Updated: 2025-01-14 15:30:00
================================================================================
TOP GAINERS (24h)
--------------------------------------------------------------------------------
Rank Symbol Price Change Vol Ratio Market Cap Score
--------------------------------------------------------------------------------
1 XYZ $1.234 +45.67% 5.2x $123.4M 89.3
2 ABC $0.567 +32.10% 3.8x $45.6M 76.5
3 DEF $2.890 +28.45% 2.9x $234.5M 71.2
--------------------------------------------------------------------------------
TOP LOSERS (24h)
--------------------------------------------------------------------------------
Rank Symbol Price Change Vol Ratio Market Cap Score
--------------------------------------------------------------------------------
1 GHI $3.456 -28.90% 4.1x $89.1M 72.1
2 JKL $0.123 -22.34% 2.5x $12.3M 58.9
--------------------------------------------------------------------------------
Summary: 42 movers found | Scanned: 1000 assets
================================================================================
JSON Output (--format json)
{
"gainers": [
{
"rank": 1,
"symbol": "XYZ",
"name": "Example Token",
"price": 1.234,
"change_24h": 45.67,
"volume_ratio": 5.2,
"market_cap": 123400000,
"significance_score": 89.3,
"category": "defi"
}
],
"losers": [...],
"meta": {
"scan_time": "2025-01-14T15:30:00Z",
"thresholds": {
"min_change": 5,
"volume_spike": 2,
"min_market_cap": 10000000
},
"total_scanned": 1000,
"matches": 42
}
}
Significance Score
The significance score (0-100) combines:
- Change % (40%): Larger moves score higher
- Volume Ratio (40%): Higher volume confirmation scores higher
- Market Cap (20%): Larger caps score slightly higher
Higher scores indicate more significant, higher-conviction moves.
Configuration
Edit {baseDir}/config/settings.yaml:
# Default Thresholds
thresholds:
min_change: 5 # Minimum % change to include
volume_spike: 2 # Minimum volume ratio (current/avg)
min_market_cap: 10000000 # $10M minimum
max_market_cap: null # No maximum by default
# Scoring Weights
scoring:
change_weight: 0.40
volume_weight: 0.40
cap_weight: 0.20
# Display
display:
top_n: 20 # Number of results per category
sort_by: significance # significance, change, volume, market_cap
# Categories (CoinGecko category IDs)
categories:
defi:
- decentralized-finance-defi
- yield-farming
layer2:
- layer-2
- polygon-ecosystem
- arbitrum-ecosystem
nft:
- non-fungible-tokens-nft
gaming:
- gaming
meme:
- meme-token
Named Presets
Create presets in {baseDir}/config/presets/:
aggressive.yaml:
min_change: 3
volume_spike: 1.5
min_market_cap: 1000000
top_n: 50
conservative.yaml:
min_change: 10
volume_spike: 3
min_market_cap: 100000000
top_n: 10
Use with:
python {baseDir}/scripts/scanner.py --preset aggressive
Error Handling
See {baseDir}/references/errors.md for comprehensive error handling.
Common Errors
| Error | Cause | Solution |
|---|---|---|
Dependency not found | tracking-crypto-prices unavailable | Install market-price-tracker plugin |
No movers found | Thresholds too strict | Relax thresholds with lower values |
Rate limit exceeded | Too many API calls | Wait or use cached data |
Partial results | Some assets unavailable | Normal, proceed with available data |
Examples
See {baseDir}/references/examples.md for detailed usage examples.
Example 1: Daily Scan
python {baseDir}/scripts/scanner.py --timeframe 24h --top 20
Example 2: Volume Spike Hunt
python {baseDir}/scripts/scanner.py --volume-spike 5 --min-volume 1000000
Example 3: DeFi Movers Export
python {baseDir}/scripts/scanner.py --category defi --format csv --output defi_movers.csv
Example 4: High-Cap Gainers
python {baseDir}/scripts/scanner.py --min-cap 1000000000 --gainers-only --top 10
Integration with Other Skills
This skill can be combined with other crypto skills:
With crypto-signal-generator:
# Get movers, then generate signals for top gainers
python {baseDir}/scripts/scanner.py --format json | \
python ../crypto-signal-generator/.../scanner.py --from-stdin
With arbitrage-opportunity-finder: Volume spikes often precede arbitrage opportunities. Use movers as input for arbitrage scanning.
Files
| File | Purpose |
|---|---|
scripts/scanner.py | Main CLI entry point |
scripts/analyzer.py | Core analysis logic |
scripts/filters.py | Threshold filtering |
scripts/scorers.py | Significance scoring |
scripts/formatters.py | Output formatting |
config/settings.yaml | User configuration |
config/presets/ | Named preset configurations |
Resources
- PRD.md - Product requirements
- ARD.md - Architecture documentation
- Depends on: tracking-crypto-prices skill
- CoinGecko API documentation: https://www.coingecko.com/en/api
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
