Implement Retell AI lint rules, policy enforcement, and automated guardrails. Use when setting up code quality rules for Retell AI integrations, implementing pre-commit hooks, or configuring CI policy checks for Retell AI best practices. Trigger with phrases like "retellai policy", "retellai lint", "retellai guardrails", "retellai best practices check", "retellai eslint".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: retellai-policy-guardrails description: | Implement Retell AI lint rules, policy enforcement, and automated guardrails. Use when setting up code quality rules for Retell AI integrations, implementing pre-commit hooks, or configuring CI policy checks for Retell AI best practices. Trigger with phrases like "retellai policy", "retellai lint", "retellai guardrails", "retellai best practices check", "retellai eslint". allowed-tools: Read, Write, Edit, Bash(npx:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Retell AI Policy & Guardrails
Overview
Automated policy enforcement and guardrails for Retell AI integrations.
Prerequisites
- ESLint configured in project
- Pre-commit hooks infrastructure
- CI/CD pipeline with policy checks
- TypeScript for type enforcement
ESLint Rules
Custom Retell AI Plugin
// eslint-plugin-retellai/rules/no-hardcoded-keys.js
module.exports = {
meta: {
type: 'problem',
docs: {
description: 'Disallow hardcoded Retell AI API keys',
},
fixable: 'code',
},
create(context) {
return {
Literal(node) {
if (typeof node.value === 'string') {
if (node.value.match(/^sk_(live|test)_[a-zA-Z0-9]{24,}/)) {
context.report({
node,
message: 'Hardcoded Retell AI API key detected',
});
}
}
},
};
},
};
ESLint Configuration
// .eslintrc.js
module.exports = {
plugins: ['retellai'],
rules: {
'retellai/no-hardcoded-keys': 'error',
'retellai/require-error-handling': 'warn',
'retellai/use-typed-client': 'warn',
},
};
Pre-Commit Hooks
# .pre-commit-config.yaml
repos:
- repo: local
hooks:
- id: retellai-secrets-check
name: Check for Retell AI secrets
entry: bash -c 'git diff --cached --name-only | xargs grep -l "sk_live_" && exit 1 || exit 0'
language: system
pass_filenames: false
- id: retellai-config-validate
name: Validate Retell AI configuration
entry: node scripts/validate-retellai-config.js
language: node
files: '\.retellai\.json$'
TypeScript Strict Patterns
// Enforce typed configuration
interface Retell AIStrictConfig {
apiKey: string; // Required
environment: 'development' | 'staging' | 'production'; // Enum
timeout: number; // Required number, not optional
retries: number;
}
// Disallow any in Retell AI code
// @ts-expect-error - Using any is forbidden
const client = new Client({ apiKey: any });
// Prefer this
const client = new RetellAIClient(config satisfies Retell AIStrictConfig);
Architecture Decision Records
ADR Template
# ADR-001: Retell AI Client Initialization
## Status
Accepted
## Context
We need to decide how to initialize the Retell AI client across our application.
## Decision
We will use the singleton pattern with lazy initialization.
## Consequences
- Pro: Single client instance, connection reuse
- Pro: Easy to mock in tests
- Con: Global state requires careful lifecycle management
## Enforcement
- ESLint rule: retellai/use-singleton-client
- CI check: grep for "new RetellAIClient(" outside allowed files
Policy-as-Code (OPA)
# retellai-policy.rego
package retellai
# Deny production API keys in non-production environments
deny[msg] {
input.environment != "production"
startswith(input.apiKey, "sk_live_")
msg := "Production API keys not allowed in non-production environment"
}
# Require minimum timeout
deny[msg] {
input.timeout < 10000
msg := sprintf("Timeout too low: %d < 10000ms minimum", [input.timeout])
}
# Require retry configuration
deny[msg] {
not input.retries
msg := "Retry configuration is required"
}
CI Policy Checks
# .github/workflows/retellai-policy.yml
name: Retell AI Policy Check
on: [push, pull_request]
jobs:
policy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Check for hardcoded secrets
run: |
if grep -rE "sk_(live|test)_[a-zA-Z0-9]{24,}" --include="*.ts" --include="*.js" .; then
echo "ERROR: Hardcoded Retell AI keys found"
exit 1
fi
- name: Validate configuration schema
run: |
npx ajv validate -s retellai-config.schema.json -d config/retellai/*.json
- name: Run ESLint Retell AI rules
run: npx eslint --plugin retellai --rule 'retellai/no-hardcoded-keys: error' src/
Runtime Guardrails
// Prevent dangerous operations in production
const BLOCKED_IN_PROD = ['deleteAll', 'resetData', 'migrateDown'];
function guardRetell AIOperation(operation: string): void {
const isProd = process.env.NODE_ENV === 'production';
if (isProd && BLOCKED_IN_PROD.includes(operation)) {
throw new Error(`Operation '${operation}' blocked in production`);
}
}
// Rate limit protection
function guardRateLimits(requestsInWindow: number): void {
const limit = parseInt(process.env.RETELLAI_RATE_LIMIT || '100');
if (requestsInWindow > limit * 0.9) {
console.warn('Approaching Retell AI rate limit');
}
if (requestsInWindow >= limit) {
throw new Error('Retell AI rate limit exceeded - request blocked');
}
}
Instructions
Step 1: Create ESLint Rules
Implement custom lint rules for Retell AI patterns.
Step 2: Configure Pre-Commit Hooks
Set up hooks to catch issues before commit.
Step 3: Add CI Policy Checks
Implement policy-as-code in CI pipeline.
Step 4: Enable Runtime Guardrails
Add production safeguards for dangerous operations.
Output
- ESLint plugin with Retell AI rules
- Pre-commit hooks blocking secrets
- CI policy checks passing
- Runtime guardrails active
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| ESLint rule not firing | Wrong config | Check plugin registration |
| Pre-commit skipped | --no-verify | Enforce in CI |
| Policy false positive | Regex too broad | Narrow pattern match |
| Guardrail triggered | Actual issue | Fix or whitelist |
Examples
Quick ESLint Check
npx eslint --plugin retellai --rule 'retellai/no-hardcoded-keys: error' src/
Resources
Next Steps
For architecture blueprints, see retellai-architecture-variants.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
