jeremylongshore

retellai-migration-deep-dive

@jeremylongshore/retellai-migration-deep-dive
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Execute Retell AI major re-architecture and migration strategies with strangler fig pattern. Use when migrating to or from Retell AI, performing major version upgrades, or re-platforming existing integrations to Retell AI. Trigger with phrases like "migrate retellai", "retellai migration", "switch to retellai", "retellai replatform", "retellai upgrade major".

Installation

$skills install @jeremylongshore/retellai-migration-deep-dive
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/retellai-pack/skills/retellai-migration-deep-dive/SKILL.md
Branchmain
Scoped Name@jeremylongshore/retellai-migration-deep-dive

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: retellai-migration-deep-dive description: | Execute Retell AI major re-architecture and migration strategies with strangler fig pattern. Use when migrating to or from Retell AI, performing major version upgrades, or re-platforming existing integrations to Retell AI. Trigger with phrases like "migrate retellai", "retellai migration", "switch to retellai", "retellai replatform", "retellai upgrade major". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(node:), Bash(kubectl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Retell AI Migration Deep Dive

Overview

Comprehensive guide for migrating to or from Retell AI, or major version upgrades.

Prerequisites

  • Current system documentation
  • Retell AI SDK installed
  • Feature flag infrastructure
  • Rollback strategy tested

Migration Types

TypeComplexityDurationRisk
Fresh installLowDaysLow
From competitorMediumWeeksMedium
Major versionMediumWeeksMedium
Full replatformHighMonthsHigh

Pre-Migration Assessment

Step 1: Current State Analysis

# Document current implementation
find . -name "*.ts" -o -name "*.py" | xargs grep -l "retellai" > retellai-files.txt

# Count integration points
wc -l retellai-files.txt

# Identify dependencies
npm list | grep retellai
pip freeze | grep retellai

Step 2: Data Inventory

interface MigrationInventory {
  dataTypes: string[];
  recordCounts: Record<string, number>;
  dependencies: string[];
  integrationPoints: string[];
  customizations: string[];
}

async function assessRetell AIMigration(): Promise<MigrationInventory> {
  return {
    dataTypes: await getDataTypes(),
    recordCounts: await getRecordCounts(),
    dependencies: await analyzeDependencies(),
    integrationPoints: await findIntegrationPoints(),
    customizations: await documentCustomizations(),
  };
}

Migration Strategy: Strangler Fig Pattern

Phase 1: Parallel Run
┌─────────────┐     ┌─────────────┐
│   Old       │     │   New       │
│   System    │ ──▶ │  Retell AI   │
│   (100%)    │     │   (0%)      │
└─────────────┘     └─────────────┘

Phase 2: Gradual Shift
┌─────────────┐     ┌─────────────┐
│   Old       │     │   New       │
│   (50%)     │ ──▶ │   (50%)     │
└─────────────┘     └─────────────┘

Phase 3: Complete
┌─────────────┐     ┌─────────────┐
│   Old       │     │   New       │
│   (0%)      │ ──▶ │   (100%)    │
└─────────────┘     └─────────────┘

Implementation Plan

Phase 1: Setup (Week 1-2)

# Install Retell AI SDK
npm install @retellai/sdk

# Configure credentials
cp .env.example .env.retellai
# Edit with new credentials

# Verify connectivity
node -e "require('@retellai/sdk').ping()"

Phase 2: Adapter Layer (Week 3-4)

// src/adapters/retellai.ts
interface ServiceAdapter {
  create(data: CreateInput): Promise<Resource>;
  read(id: string): Promise<Resource>;
  update(id: string, data: UpdateInput): Promise<Resource>;
  delete(id: string): Promise<void>;
}

class Retell AIAdapter implements ServiceAdapter {
  async create(data: CreateInput): Promise<Resource> {
    const retellaiData = this.transform(data);
    return retellaiClient.create(retellaiData);
  }

  private transform(data: CreateInput): Retell AIInput {
    // Map from old format to Retell AI format
  }
}

Phase 3: Data Migration (Week 5-6)

async function migrateRetell AIData(): Promise<MigrationResult> {
  const batchSize = 100;
  let processed = 0;
  let errors: MigrationError[] = [];

  for await (const batch of oldSystem.iterateBatches(batchSize)) {
    try {
      const transformed = batch.map(transform);
      await retellaiClient.batchCreate(transformed);
      processed += batch.length;
    } catch (error) {
      errors.push({ batch, error });
    }

    // Progress update
    console.log(`Migrated ${processed} records`);
  }

  return { processed, errors };
}

Phase 4: Traffic Shift (Week 7-8)

// Feature flag controlled traffic split
function getServiceAdapter(): ServiceAdapter {
  const retellaiPercentage = getFeatureFlag('retellai_migration_percentage');

  if (Math.random() * 100 < retellaiPercentage) {
    return new Retell AIAdapter();
  }

  return new LegacyAdapter();
}

Rollback Plan

# Immediate rollback
kubectl set env deployment/app RETELLAI_ENABLED=false
kubectl rollout restart deployment/app

# Data rollback (if needed)
./scripts/restore-from-backup.sh --date YYYY-MM-DD

# Verify rollback
curl https://app.yourcompany.com/health | jq '.services.retellai'

Post-Migration Validation

async function validateRetell AIMigration(): Promise<ValidationReport> {
  const checks = [
    { name: 'Data count match', fn: checkDataCounts },
    { name: 'API functionality', fn: checkApiFunctionality },
    { name: 'Performance baseline', fn: checkPerformance },
    { name: 'Error rates', fn: checkErrorRates },
  ];

  const results = await Promise.all(
    checks.map(async c => ({ name: c.name, result: await c.fn() }))
  );

  return { checks: results, passed: results.every(r => r.result.success) };
}

Instructions

Step 1: Assess Current State

Document existing implementation and data inventory.

Step 2: Build Adapter Layer

Create abstraction layer for gradual migration.

Step 3: Migrate Data

Run batch data migration with error handling.

Step 4: Shift Traffic

Gradually route traffic to new Retell AI integration.

Output

  • Migration assessment complete
  • Adapter layer implemented
  • Data migrated successfully
  • Traffic fully shifted to Retell AI

Error Handling

IssueCauseSolution
Data mismatchTransform errorsValidate transform logic
Performance dropNo cachingAdd caching layer
Rollback triggeredErrors spikedReduce traffic percentage
Validation failedMissing dataCheck batch processing

Examples

Quick Migration Status

const status = await validateRetell AIMigration();
console.log(`Migration ${status.passed ? 'PASSED' : 'FAILED'}`);
status.checks.forEach(c => console.log(`  ${c.name}: ${c.result.success}`));

Resources

Flagship+ Skills

For advanced troubleshooting, see retellai-advanced-troubleshooting.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.