jeremylongshore

retellai-load-scale

@jeremylongshore/retellai-load-scale
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement Retell AI load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Retell AI integrations. Trigger with phrases like "retellai load test", "retellai scale", "retellai performance test", "retellai capacity", "retellai k6", "retellai benchmark".

Installation

$skills install @jeremylongshore/retellai-load-scale
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/retellai-pack/skills/retellai-load-scale/SKILL.md
Branchmain
Scoped Name@jeremylongshore/retellai-load-scale

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: retellai-load-scale description: | Implement Retell AI load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Retell AI integrations. Trigger with phrases like "retellai load test", "retellai scale", "retellai performance test", "retellai capacity", "retellai k6", "retellai benchmark". allowed-tools: Read, Write, Edit, Bash(k6:), Bash(kubectl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Retell AI Load & Scale

Overview

Load testing, scaling strategies, and capacity planning for Retell AI integrations.

Prerequisites

  • k6 load testing tool installed
  • Kubernetes cluster with HPA configured
  • Prometheus for metrics collection
  • Test environment API keys

Load Testing with k6

Basic Load Test

// retellai-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';

export const options = {
  stages: [
    { duration: '2m', target: 10 },   // Ramp up
    { duration: '5m', target: 10 },   // Steady state
    { duration: '2m', target: 50 },   // Ramp to peak
    { duration: '5m', target: 50 },   // Stress test
    { duration: '2m', target: 0 },    // Ramp down
  ],
  thresholds: {
    http_req_duration: ['p(95)<500'],
    http_req_failed: ['rate<0.01'],
  },
};

export default function () {
  const response = http.post(
    'https://api.retellai.com/v1/resource',
    JSON.stringify({ test: true }),
    {
      headers: {
        'Content-Type': 'application/json',
        'Authorization': `Bearer ${__ENV.RETELLAI_API_KEY}`,
      },
    }
  );

  check(response, {
    'status is 200': (r) => r.status === 200,
    'latency < 500ms': (r) => r.timings.duration < 500,
  });

  sleep(1);
}

Run Load Test

# Install k6
brew install k6  # macOS
# or: sudo apt install k6  # Linux

# Run test
k6 run --env RETELLAI_API_KEY=${RETELLAI_API_KEY} retellai-load-test.js

# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 retellai-load-test.js

Scaling Patterns

Horizontal Scaling

# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: retellai-integration-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: retellai-integration
  minReplicas: 2
  maxReplicas: 20
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 70
    - type: Pods
      pods:
        metric:
          name: retellai_queue_depth
        target:
          type: AverageValue
          averageValue: 100

Connection Pooling

import { Pool } from 'generic-pool';

const retellaiPool = Pool.create({
  create: async () => {
    return new RetellAIClient({
      apiKey: process.env.RETELLAI_API_KEY!,
    });
  },
  destroy: async (client) => {
    await client.close();
  },
  max: 20,
  min: 5,
  idleTimeoutMillis: 30000,
});

async function withRetell AIClient<T>(
  fn: (client: RetellAIClient) => Promise<T>
): Promise<T> {
  const client = await retellaiPool.acquire();
  try {
    return await fn(client);
  } finally {
    retellaiPool.release(client);
  }
}

Capacity Planning

Metrics to Monitor

MetricWarningCritical
CPU Utilization> 70%> 85%
Memory Usage> 75%> 90%
Request Queue Depth> 100> 500
Error Rate> 1%> 5%
P95 Latency> 1000ms> 3000ms

Capacity Calculation

interface CapacityEstimate {
  currentRPS: number;
  maxRPS: number;
  headroom: number;
  scaleRecommendation: string;
}

function estimateRetell AICapacity(
  metrics: SystemMetrics
): CapacityEstimate {
  const currentRPS = metrics.requestsPerSecond;
  const avgLatency = metrics.p50Latency;
  const cpuUtilization = metrics.cpuPercent;

  // Estimate max RPS based on current performance
  const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
  const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;

  return {
    currentRPS,
    maxRPS: Math.floor(maxRPS),
    headroom: Math.round(headroom),
    scaleRecommendation: headroom < 30
      ? 'Scale up soon'
      : headroom < 50
      ? 'Monitor closely'
      : 'Adequate capacity',
  };
}

Benchmark Results Template

## Retell AI Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z

### Test Configuration
- Duration: 10 minutes
- Ramp: 10 → 100 → 10 VUs
- Target endpoint: /v1/resource

### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |

### Observations
- [Key finding 1]
- [Key finding 2]

### Recommendations
- [Scaling recommendation]

Instructions

Step 1: Create Load Test Script

Write k6 test script with appropriate thresholds.

Step 2: Configure Auto-Scaling

Set up HPA with CPU and custom metrics.

Step 3: Run Load Test

Execute test and collect metrics.

Step 4: Analyze and Document

Record results in benchmark template.

Output

  • Load test script created
  • HPA configured
  • Benchmark results documented
  • Capacity recommendations defined

Error Handling

IssueCauseSolution
k6 timeoutRate limitedReduce RPS
HPA not scalingWrong metricsVerify metric name
Connection refusedPool exhaustedIncrease pool size
Inconsistent resultsWarm-up neededAdd ramp-up phase

Examples

Quick k6 Test

k6 run --vus 10 --duration 30s retellai-load-test.js

Check Current Capacity

const metrics = await getSystemMetrics();
const capacity = estimateRetell AICapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);

Scale HPA Manually

kubectl scale deployment retellai-integration --replicas=5
kubectl get hpa retellai-integration-hpa

Resources

Next Steps

For reliability patterns, see retellai-reliability-patterns.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.