jeremylongshore

retellai-cost-tuning

@jeremylongshore/retellai-cost-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Retell AI costs through tier selection, sampling, and usage monitoring. Use when analyzing Retell AI billing, reducing API costs, or implementing usage monitoring and budget alerts. Trigger with phrases like "retellai cost", "retellai billing", "reduce retellai costs", "retellai pricing", "retellai expensive", "retellai budget".

Installation

$skills install @jeremylongshore/retellai-cost-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/retellai-pack/skills/retellai-cost-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/retellai-cost-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: retellai-cost-tuning description: | Optimize Retell AI costs through tier selection, sampling, and usage monitoring. Use when analyzing Retell AI billing, reducing API costs, or implementing usage monitoring and budget alerts. Trigger with phrases like "retellai cost", "retellai billing", "reduce retellai costs", "retellai pricing", "retellai expensive", "retellai budget". allowed-tools: Read, Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Retell AI Cost Tuning

Overview

Optimize Retell AI costs through smart tier selection, sampling, and usage monitoring.

Prerequisites

  • Access to Retell AI billing dashboard
  • Understanding of current usage patterns
  • Database for usage tracking (optional)
  • Alerting system configured (optional)

Pricing Tiers

TierMonthly CostIncludedOverage
Free$01,000 requestsN/A
Pro$99100,000 requests$0.001/request
EnterpriseCustomUnlimitedVolume discounts

Cost Estimation

interface UsageEstimate {
  requestsPerMonth: number;
  tier: string;
  estimatedCost: number;
  recommendation?: string;
}

function estimateRetell AICost(requestsPerMonth: number): UsageEstimate {
  if (requestsPerMonth <= 1000) {
    return { requestsPerMonth, tier: 'Free', estimatedCost: 0 };
  }

  if (requestsPerMonth <= 100000) {
    return { requestsPerMonth, tier: 'Pro', estimatedCost: 99 };
  }

  const proOverage = (requestsPerMonth - 100000) * 0.001;
  const proCost = 99 + proOverage;

  return {
    requestsPerMonth,
    tier: 'Pro (with overage)',
    estimatedCost: proCost,
    recommendation: proCost > 500
      ? 'Consider Enterprise tier for volume discounts'
      : undefined,
  };
}

Usage Monitoring

class Retell AIUsageMonitor {
  private requestCount = 0;
  private bytesTransferred = 0;
  private alertThreshold: number;

  constructor(monthlyBudget: number) {
    this.alertThreshold = monthlyBudget * 0.8; // 80% warning
  }

  track(request: { bytes: number }) {
    this.requestCount++;
    this.bytesTransferred += request.bytes;

    if (this.estimatedCost() > this.alertThreshold) {
      this.sendAlert('Approaching Retell AI budget limit');
    }
  }

  estimatedCost(): number {
    return estimateRetell AICost(this.requestCount).estimatedCost;
  }

  private sendAlert(message: string) {
    // Send to Slack, email, PagerDuty, etc.
  }
}

Cost Reduction Strategies

Step 1: Request Sampling

function shouldSample(samplingRate = 0.1): boolean {
  return Math.random() < samplingRate;
}

// Use for non-critical telemetry
if (shouldSample(0.1)) { // 10% sample
  await retellaiClient.trackEvent(event);
}

Step 2: Batching Requests

// Instead of N individual calls
await Promise.all(ids.map(id => retellaiClient.get(id)));

// Use batch endpoint (1 call)
await retellaiClient.batchGet(ids);

Step 3: Caching (from P16)

  • Cache frequently accessed data
  • Use cache invalidation webhooks
  • Set appropriate TTLs

Step 4: Compression

const client = new RetellAIClient({
  compression: true, // Enable gzip
});

Budget Alerts

# Set up billing alerts in Retell AI dashboard
# Or use API if available:
# Check Retell AI documentation for billing APIs

Cost Dashboard Query

-- If tracking usage in your database
SELECT
  DATE_TRUNC('day', created_at) as date,
  COUNT(*) as requests,
  SUM(response_bytes) as bytes,
  COUNT(*) * 0.001 as estimated_cost
FROM retellai_api_logs
WHERE created_at >= NOW() - INTERVAL '30 days'
GROUP BY 1
ORDER BY 1;

Instructions

Step 1: Analyze Current Usage

Review Retell AI dashboard for usage patterns and costs.

Step 2: Select Optimal Tier

Use the cost estimation function to find the right tier.

Step 3: Implement Monitoring

Add usage tracking to catch budget overruns early.

Step 4: Apply Optimizations

Enable batching, caching, and sampling where appropriate.

Output

  • Optimized tier selection
  • Usage monitoring implemented
  • Budget alerts configured
  • Cost reduction strategies applied

Error Handling

IssueCauseSolution
Unexpected chargesUntracked usageImplement monitoring
Overage feesWrong tierUpgrade tier
Budget exceededNo alertsSet up alerts
Inefficient usageNo batchingEnable batch requests

Examples

Quick Cost Check

// Estimate monthly cost for your usage
const estimate = estimateRetell AICost(yourMonthlyRequests);
console.log(`Tier: ${estimate.tier}, Cost: $${estimate.estimatedCost}`);
if (estimate.recommendation) {
  console.log(`💡 ${estimate.recommendation}`);
}

Resources

Next Steps

For architecture patterns, see retellai-reference-architecture.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.