Find and compare DeFi yield opportunities across protocols with APY calculations, risk assessment, and optimization recommendations. Use when searching for yield farming opportunities, comparing DeFi protocols, or analyzing APY/APR rates. Trigger with phrases like "find DeFi yields", "compare APY", "best yield farming", "optimize DeFi returns", "stablecoin yields", or "liquidity pool rates".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: optimizing-defi-yields description: | Find and compare DeFi yield opportunities across protocols with APY calculations, risk assessment, and optimization recommendations. Use when searching for yield farming opportunities, comparing DeFi protocols, or analyzing APY/APR rates. Trigger with phrases like "find DeFi yields", "compare APY", "best yield farming", "optimize DeFi returns", "stablecoin yields", or "liquidity pool rates".
allowed-tools: Read, Write, Bash(crypto:yield-*) version: 2.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT
Optimizing DeFi Yields
Overview
Find and compare DeFi yield opportunities across protocols. Aggregates data from DeFiLlama and other sources to provide APY/APR comparisons, risk assessments, and optimization recommendations for yield farming strategies.
Prerequisites
Before using this skill, ensure you have:
- Python 3.8+ installed
- Internet access for API queries
- Understanding of DeFi concepts (APY, APR, TVL, impermanent loss)
Instructions
Step 1: Search for Yield Opportunities
Find top yields across all chains:
python {baseDir}/scripts/yield_optimizer.py --top 20
Filter by specific chain:
python {baseDir}/scripts/yield_optimizer.py --chain ethereum --top 10
Step 2: Filter by Criteria
Filter by minimum TVL (for safety):
python {baseDir}/scripts/yield_optimizer.py --min-tvl 10000000 --top 15
Filter by asset type:
python {baseDir}/scripts/yield_optimizer.py --asset USDC --chain ethereum
Filter by protocol:
python {baseDir}/scripts/yield_optimizer.py --protocol aave,compound,curve
Step 3: Apply Risk Filters
Show only audited protocols:
python {baseDir}/scripts/yield_optimizer.py --audited-only --min-tvl 1000000
Filter by risk level:
| Level | Flag | Description |
|---|---|---|
| Low | --risk low | Blue-chip, battle-tested protocols |
| Medium | --risk medium | Established protocols, moderate risk |
| High | --risk high | Newer protocols, higher yields |
python {baseDir}/scripts/yield_optimizer.py --risk low --min-apy 3
Step 4: Analyze Specific Opportunities
Get detailed breakdown for a pool:
python {baseDir}/scripts/yield_optimizer.py --pool "aave-v3-usdc-ethereum" --detailed
Compare specific protocols:
python {baseDir}/scripts/yield_optimizer.py --compare aave,compound,spark --asset USDC
Step 5: Export Results
Export to JSON for further analysis:
python {baseDir}/scripts/yield_optimizer.py --top 50 --format json --output yields.json
Export to CSV:
python {baseDir}/scripts/yield_optimizer.py --chain ethereum --format csv --output eth_yields.csv
Output
Yield Summary Table
==============================================================================
DEFI YIELD OPTIMIZER 2026-01-15 15:30 UTC
==============================================================================
TOP YIELD OPPORTUNITIES
------------------------------------------------------------------------------
Protocol Pool Chain TVL APY Risk Score
Convex cvxCRV Ethereum $450M 12.5% Low 9.2
Aave v3 USDC Ethereum $2.1B 4.2% Low 9.8
Curve 3pool Ethereum $890M 3.8% Low 9.5
Compound v3 USDC Ethereum $1.5B 3.2% Low 9.6
Yearn yvUSDC Ethereum $120M 5.1% Medium 7.8
------------------------------------------------------------------------------
APY BREAKDOWN (Top Result)
------------------------------------------------------------------------------
Base APY: 4.5%
Reward APY: 8.0% (CRV + CVX)
Total APY: 12.5%
IL Risk: None (single-sided)
==============================================================================
Risk Assessment
RISK ANALYSIS: Convex cvxCRV
------------------------------------------------------------------------------
Audit Status: ✓ Audited (Trail of Bits, OpenZeppelin)
Protocol Age: 3+ years
TVL: $450M (stable)
TVL Trend: +5% (30d)
Risk Score: 9.2/10 (Low Risk)
Risk Factors:
• Smart contract dependency on Curve
• CRV/CVX reward token volatility
• Vote-lock mechanics
==============================================================================
Error Handling
See {baseDir}/references/errors.md for comprehensive error handling.
Common issues:
- API timeout: Uses cached data with staleness warning
- No pools found: Broaden search criteria
- Invalid protocol: Check supported protocols list
Examples
See {baseDir}/references/examples.md for detailed usage examples.
Quick Examples
Find stablecoin yields:
python yield_optimizer.py --asset USDC,USDT,DAI --min-tvl 10000000
Low-risk opportunities:
python yield_optimizer.py --risk low --audited-only --min-apy 2
Multi-chain search:
python yield_optimizer.py --chain ethereum,arbitrum,polygon --top 20
Export top yields:
python yield_optimizer.py --top 100 --format json --output all_yields.json
Configuration
Settings in {baseDir}/config/settings.yaml:
- Default chain: Primary chain to search
- Cache TTL: How long to cache API responses
- Risk weights: Customize risk scoring factors
- Min TVL default: Default minimum TVL filter
Resources
- DeFiLlama: https://defillama.com/yields - Yield data source
- DeFi Safety: https://defisafety.com/ - Protocol security scores
- Impermanent Loss Calculator: Understand LP risks
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
