TypeScript/JavaScript SDK patterns and best practices for Linear. Use when learning SDK idioms, implementing common patterns, or optimizing Linear API usage. Trigger with phrases like "linear SDK patterns", "linear best practices", "linear typescript", "linear API patterns", "linear SDK idioms".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: linear-sdk-patterns description: | TypeScript/JavaScript SDK patterns and best practices for Linear. Use when learning SDK idioms, implementing common patterns, or optimizing Linear API usage. Trigger with phrases like "linear SDK patterns", "linear best practices", "linear typescript", "linear API patterns", "linear SDK idioms". allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Linear SDK Patterns
Overview
Essential patterns and best practices for working with the Linear SDK.
Prerequisites
- Linear SDK installed and configured
- TypeScript project setup
- Understanding of async/await patterns
Core Patterns
Pattern 1: Client Singleton
// lib/linear.ts
import { LinearClient } from "@linear/sdk";
let client: LinearClient | null = null;
export function getLinearClient(): LinearClient {
if (!client) {
if (!process.env.LINEAR_API_KEY) {
throw new Error("LINEAR_API_KEY environment variable not set");
}
client = new LinearClient({
apiKey: process.env.LINEAR_API_KEY,
});
}
return client;
}
Pattern 2: Pagination Handling
import { LinearClient, Issue, IssueConnection } from "@linear/sdk";
async function* getAllIssues(
client: LinearClient,
filter?: Record<string, unknown>
): AsyncGenerator<Issue> {
let hasNextPage = true;
let endCursor: string | undefined;
while (hasNextPage) {
const connection: IssueConnection = await client.issues({
filter,
first: 50, // Max per page
after: endCursor,
});
for (const issue of connection.nodes) {
yield issue;
}
hasNextPage = connection.pageInfo.hasNextPage;
endCursor = connection.pageInfo.endCursor;
}
}
// Usage
for await (const issue of getAllIssues(client, { state: { name: { eq: "Todo" } } })) {
console.log(issue.identifier, issue.title);
}
Pattern 3: Error Handling Wrapper
import { LinearClient, LinearError } from "@linear/sdk";
interface LinearResult<T> {
success: boolean;
data?: T;
error?: {
message: string;
code?: string;
retryable: boolean;
};
}
async function linearOperation<T>(
operation: () => Promise<T>
): Promise<LinearResult<T>> {
try {
const data = await operation();
return { success: true, data };
} catch (error) {
if (error instanceof LinearError) {
return {
success: false,
error: {
message: error.message,
code: error.type,
retryable: error.type === "RateLimitedError",
},
};
}
return {
success: false,
error: {
message: error instanceof Error ? error.message : "Unknown error",
retryable: false,
},
};
}
}
// Usage
const result = await linearOperation(() => client.createIssue({
teamId: team.id,
title: "New issue",
}));
if (result.success) {
console.log("Issue created:", result.data);
} else if (result.error?.retryable) {
// Implement retry logic
}
Pattern 4: Batch Operations
async function batchUpdateIssues(
client: LinearClient,
issueIds: string[],
update: { stateId?: string; priority?: number }
): Promise<{ success: number; failed: number }> {
const results = await Promise.allSettled(
issueIds.map(id => client.updateIssue(id, update))
);
return {
success: results.filter(r => r.status === "fulfilled").length,
failed: results.filter(r => r.status === "rejected").length,
};
}
Pattern 5: Caching Layer
interface CacheEntry<T> {
data: T;
expiresAt: number;
}
class LinearCache {
private cache = new Map<string, CacheEntry<unknown>>();
private ttl: number;
constructor(ttlSeconds = 60) {
this.ttl = ttlSeconds * 1000;
}
async get<T>(key: string, fetcher: () => Promise<T>): Promise<T> {
const cached = this.cache.get(key) as CacheEntry<T> | undefined;
if (cached && cached.expiresAt > Date.now()) {
return cached.data;
}
const data = await fetcher();
this.cache.set(key, { data, expiresAt: Date.now() + this.ttl });
return data;
}
invalidate(key: string): void {
this.cache.delete(key);
}
}
// Usage
const cache = new LinearCache(300); // 5 minute TTL
const teams = await cache.get("teams", () => client.teams());
Pattern 6: Type-Safe Filters
import { IssueFilter } from "@linear/sdk";
function buildIssueFilter(options: {
teamKeys?: string[];
states?: string[];
assigneeId?: string;
priority?: number[];
}): IssueFilter {
const filter: IssueFilter = {};
if (options.teamKeys?.length) {
filter.team = { key: { in: options.teamKeys } };
}
if (options.states?.length) {
filter.state = { name: { in: options.states } };
}
if (options.assigneeId) {
filter.assignee = { id: { eq: options.assigneeId } };
}
if (options.priority?.length) {
filter.priority = { in: options.priority };
}
return filter;
}
Output
- Reusable client singleton
- Pagination iterator for large datasets
- Type-safe error handling
- Efficient batch operations
- Caching for performance
Error Handling
| Error | Cause | Solution |
|---|---|---|
Type mismatch | SDK version incompatibility | Update @linear/sdk package |
Undefined property | Nullable field access | Use optional chaining (?.) |
Promise rejection | Unhandled async error | Wrap in try/catch or use wrapper |
Resources
Next Steps
Apply these patterns in linear-core-workflow-a for issue management.
More by jeremylongshore
View allOauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
