Handle Linear API rate limiting and quotas effectively. Use when dealing with rate limit errors, implementing throttling, or optimizing API usage patterns. Trigger with phrases like "linear rate limit", "linear throttling", "linear API quota", "linear 429 error", "linear request limits".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: linear-rate-limits description: | Handle Linear API rate limiting and quotas effectively. Use when dealing with rate limit errors, implementing throttling, or optimizing API usage patterns. Trigger with phrases like "linear rate limit", "linear throttling", "linear API quota", "linear 429 error", "linear request limits". allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Linear Rate Limits
Overview
Understand and handle Linear API rate limits for reliable integrations.
Prerequisites
- Linear SDK configured
- Understanding of HTTP headers
- Familiarity with async patterns
Linear Rate Limit Structure
Current Limits
| Tier | Requests/min | Complexity/min | Notes |
|---|---|---|---|
| Standard | 1,500 | 250,000 | Most integrations |
| Enterprise | Higher | Higher | Contact Linear |
Headers Returned
X-RateLimit-Limit: 1500
X-RateLimit-Remaining: 1499
X-RateLimit-Reset: 1640000000
X-Complexity-Limit: 250000
X-Complexity-Cost: 50
X-Complexity-Remaining: 249950
Instructions
Step 1: Basic Rate Limit Handler
// lib/rate-limiter.ts
interface RateLimitState {
remaining: number;
reset: Date;
complexityRemaining: number;
}
class LinearRateLimiter {
private state: RateLimitState = {
remaining: 1500,
reset: new Date(),
complexityRemaining: 250000,
};
updateFromHeaders(headers: Headers): void {
const remaining = headers.get("x-ratelimit-remaining");
const reset = headers.get("x-ratelimit-reset");
const complexityRemaining = headers.get("x-complexity-remaining");
if (remaining) this.state.remaining = parseInt(remaining);
if (reset) this.state.reset = new Date(parseInt(reset) * 1000);
if (complexityRemaining) {
this.state.complexityRemaining = parseInt(complexityRemaining);
}
}
async waitIfNeeded(): Promise<void> {
// If very low on requests, wait until reset
if (this.state.remaining < 10) {
const waitMs = this.state.reset.getTime() - Date.now();
if (waitMs > 0) {
console.log(`Rate limit low, waiting ${waitMs}ms...`);
await new Promise(r => setTimeout(r, waitMs));
}
}
}
getState(): RateLimitState {
return { ...this.state };
}
}
export const rateLimiter = new LinearRateLimiter();
Step 2: Exponential Backoff
// lib/backoff.ts
interface BackoffOptions {
maxRetries?: number;
baseDelayMs?: number;
maxDelayMs?: number;
jitter?: boolean;
}
export async function withBackoff<T>(
fn: () => Promise<T>,
options: BackoffOptions = {}
): Promise<T> {
const {
maxRetries = 5,
baseDelayMs = 1000,
maxDelayMs = 30000,
jitter = true,
} = options;
let lastError: Error | undefined;
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await fn();
} catch (error: any) {
lastError = error;
// Only retry on rate limit errors
const isRateLimited =
error?.extensions?.code === "RATE_LIMITED" ||
error?.response?.status === 429;
if (!isRateLimited || attempt === maxRetries - 1) {
throw error;
}
// Calculate delay with exponential backoff
let delay = Math.min(baseDelayMs * Math.pow(2, attempt), maxDelayMs);
// Add jitter to prevent thundering herd
if (jitter) {
delay += Math.random() * delay * 0.1;
}
// Check Retry-After header if available
const retryAfter = error?.response?.headers?.get?.("retry-after");
if (retryAfter) {
delay = Math.max(delay, parseInt(retryAfter) * 1000);
}
console.log(
`Rate limited, attempt ${attempt + 1}/${maxRetries}, ` +
`retrying in ${Math.round(delay)}ms...`
);
await new Promise(r => setTimeout(r, delay));
}
}
throw lastError;
}
Step 3: Request Queue
// lib/queue.ts
type QueuedRequest<T> = {
fn: () => Promise<T>;
resolve: (value: T) => void;
reject: (error: Error) => void;
};
class RequestQueue {
private queue: QueuedRequest<any>[] = [];
private processing = false;
private requestsPerSecond = 20; // Conservative rate
async add<T>(fn: () => Promise<T>): Promise<T> {
return new Promise((resolve, reject) => {
this.queue.push({ fn, resolve, reject });
this.process();
});
}
private async process(): Promise<void> {
if (this.processing) return;
this.processing = true;
while (this.queue.length > 0) {
const request = this.queue.shift()!;
try {
const result = await request.fn();
request.resolve(result);
} catch (error) {
request.reject(error as Error);
}
// Throttle requests
await new Promise(r =>
setTimeout(r, 1000 / this.requestsPerSecond)
);
}
this.processing = false;
}
get pending(): number {
return this.queue.length;
}
}
export const requestQueue = new RequestQueue();
Step 4: Batch Operations
// lib/batch.ts
import { LinearClient } from "@linear/sdk";
interface BatchConfig {
batchSize: number;
delayBetweenBatches: number;
}
export async function batchProcess<T, R>(
items: T[],
processor: (item: T) => Promise<R>,
config: BatchConfig = { batchSize: 10, delayBetweenBatches: 1000 }
): Promise<R[]> {
const results: R[] = [];
const batches: T[][] = [];
// Split into batches
for (let i = 0; i < items.length; i += config.batchSize) {
batches.push(items.slice(i, i + config.batchSize));
}
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
console.log(`Processing batch ${i + 1}/${batches.length}...`);
// Process batch in parallel
const batchResults = await Promise.all(batch.map(processor));
results.push(...batchResults);
// Delay between batches (except last)
if (i < batches.length - 1) {
await new Promise(r => setTimeout(r, config.delayBetweenBatches));
}
}
return results;
}
// Usage example
async function updateManyIssues(
client: LinearClient,
updates: { id: string; priority: number }[]
) {
return batchProcess(
updates,
({ id, priority }) => client.updateIssue(id, { priority }),
{ batchSize: 10, delayBetweenBatches: 2000 }
);
}
Step 5: Query Optimization
// Reduce complexity by limiting fields
const optimizedQuery = `
query Issues($filter: IssueFilter) {
issues(filter: $filter, first: 50) {
nodes {
id
identifier
title
# Avoid nested connections in loops
}
}
}
`;
// Use SDK efficiently
async function getIssuesOptimized(client: LinearClient, teamKey: string) {
// Good: Single query with filter
return client.issues({
filter: { team: { key: { eq: teamKey } } },
first: 50,
});
// Bad: N+1 queries
// const teams = await client.teams();
// for (const team of teams.nodes) {
// const issues = await team.issues(); // N queries!
// }
}
Output
- Rate limit monitoring
- Automatic retry with backoff
- Request queuing and throttling
- Batch processing utilities
- Optimized query patterns
Error Handling
| Error | Cause | Solution |
|---|---|---|
429 Too Many Requests | Rate limit exceeded | Use backoff and queue |
Complexity exceeded | Query too expensive | Simplify query structure |
Timeout | Long-running query | Paginate or split queries |
Resources
Next Steps
Learn security best practices with linear-security-basics.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
