jeremylongshore

linear-local-dev-loop

@jeremylongshore/linear-local-dev-loop
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Set up local Linear development environment and testing workflow. Use when configuring local development, testing integrations, or setting up a development workflow with Linear. Trigger with phrases like "linear local development", "linear dev setup", "test linear locally", "linear development environment".

Installation

$skills install @jeremylongshore/linear-local-dev-loop
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/linear-pack/skills/linear-local-dev-loop/SKILL.md
Branchmain
Scoped Name@jeremylongshore/linear-local-dev-loop

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: linear-local-dev-loop description: | Set up local Linear development environment and testing workflow. Use when configuring local development, testing integrations, or setting up a development workflow with Linear. Trigger with phrases like "linear local development", "linear dev setup", "test linear locally", "linear development environment". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(npx:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Linear Local Dev Loop

Overview

Set up an efficient local development workflow for Linear integrations.

Prerequisites

  • Node.js 18+ with TypeScript
  • Linear SDK installed
  • Separate Linear workspace for development (recommended)
  • ngrok or similar for webhook testing

Instructions

Step 1: Project Setup

# Initialize project
mkdir linear-integration && cd linear-integration
npm init -y
npm install @linear/sdk typescript ts-node dotenv
npm install -D @types/node vitest

# Create tsconfig.json
npx tsc --init --target ES2022 --module NodeNext --moduleResolution NodeNext

Step 2: Environment Configuration

# Create .env for local development
cat > .env << 'EOF'
LINEAR_API_KEY=lin_api_dev_xxxxxxxxxxxx
LINEAR_WEBHOOK_SECRET=your_webhook_secret
NODE_ENV=development
EOF

# Create .env.example (commit this)
cat > .env.example << 'EOF'
LINEAR_API_KEY=lin_api_xxxxxxxxxxxx
LINEAR_WEBHOOK_SECRET=
NODE_ENV=development
EOF

# Add to .gitignore
echo ".env" >> .gitignore
echo ".env.local" >> .gitignore

Step 3: Create Development Client

// src/client.ts
import { LinearClient } from "@linear/sdk";
import dotenv from "dotenv";

dotenv.config();

export const linearClient = new LinearClient({
  apiKey: process.env.LINEAR_API_KEY!,
});

export async function verifyClient(): Promise<boolean> {
  try {
    const viewer = await linearClient.viewer;
    console.log(`[Linear] Connected as ${viewer.name}`);
    return true;
  } catch (error) {
    console.error("[Linear] Connection failed:", error);
    return false;
  }
}

Step 4: Create Test Utilities

// src/test-utils.ts
import { linearClient } from "./client";

export async function createTestIssue(teamKey: string) {
  const teams = await linearClient.teams();
  const team = teams.nodes.find(t => t.key === teamKey);

  if (!team) throw new Error(`Team ${teamKey} not found`);

  const result = await linearClient.createIssue({
    teamId: team.id,
    title: `[TEST] ${new Date().toISOString()}`,
    description: "Automated test issue - safe to delete",
  });

  return result.issue;
}

export async function cleanupTestIssues(teamKey: string) {
  const issues = await linearClient.issues({
    filter: {
      team: { key: { eq: teamKey } },
      title: { startsWith: "[TEST]" },
    },
  });

  for (const issue of issues.nodes) {
    await issue.delete();
  }

  console.log(`Cleaned up ${issues.nodes.length} test issues`);
}

Step 5: Set Up Watch Mode

// package.json scripts
{
  "scripts": {
    "dev": "ts-node --watch src/index.ts",
    "test": "vitest",
    "test:watch": "vitest --watch",
    "verify": "ts-node src/verify.ts"
  }
}

Output

  • Local development environment ready
  • Environment variables configured
  • Test utilities for creating/cleaning test data
  • Watch mode for rapid iteration

Error Handling

ErrorCauseSolution
API key not setMissing .env fileCopy .env.example to .env
Cannot find moduleTypeScript config issueCheck tsconfig.json paths
Connection refusedNetwork issueVerify internet connectivity
Webhook not receivedTunnel not runningStart ngrok tunnel

Examples

Webhook Development with ngrok

# Terminal 1: Start your webhook server
npm run dev

# Terminal 2: Start ngrok tunnel
ngrok http 3000

# Copy the https URL and add to Linear webhook settings

Integration Test Example

// tests/integration.test.ts
import { describe, it, expect, afterAll } from "vitest";
import { createTestIssue, cleanupTestIssues } from "../src/test-utils";

describe("Linear Integration", () => {
  const teamKey = "ENG"; // Your test team

  afterAll(async () => {
    await cleanupTestIssues(teamKey);
  });

  it("should create and fetch an issue", async () => {
    const issue = await createTestIssue(teamKey);
    expect(issue).toBeDefined();
    expect(issue?.title).toContain("[TEST]");
  });
});

Resources

Next Steps

After setting up local dev, proceed to linear-sdk-patterns for best practices.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.