jeremylongshore

linear-deploy-integration

@jeremylongshore/linear-deploy-integration
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Deploy Linear-integrated applications and track deployments. Use when deploying to production, setting up deployment tracking, or integrating Linear with deployment platforms. Trigger with phrases like "deploy linear integration", "linear deployment", "linear vercel", "linear production deploy", "track linear deployments".

Installation

$skills install @jeremylongshore/linear-deploy-integration
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/linear-pack/skills/linear-deploy-integration/SKILL.md
Branchmain
Scoped Name@jeremylongshore/linear-deploy-integration

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: linear-deploy-integration description: | Deploy Linear-integrated applications and track deployments. Use when deploying to production, setting up deployment tracking, or integrating Linear with deployment platforms. Trigger with phrases like "deploy linear integration", "linear deployment", "linear vercel", "linear production deploy", "track linear deployments". allowed-tools: Read, Write, Edit, Bash(vercel:), Bash(gcloud:), Bash(aws:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Linear Deploy Integration

Overview

Deploy Linear-integrated applications and track deployments in Linear.

Prerequisites

  • Working Linear integration
  • Deployment platform account (Vercel, Railway, Cloud Run, etc.)
  • CI/CD pipeline configured

Instructions

Step 1: Vercel Deployment

# Install Vercel CLI
npm install -g vercel

# Configure environment variables
vercel env add LINEAR_API_KEY production
vercel env add LINEAR_WEBHOOK_SECRET production

# Deploy
vercel --prod
// vercel.json
{
  "env": {
    "LINEAR_API_KEY": "@linear-api-key",
    "LINEAR_WEBHOOK_SECRET": "@linear-webhook-secret"
  },
  "functions": {
    "api/webhooks/linear.ts": {
      "maxDuration": 30
    }
  }
}

Step 2: Google Cloud Run Deployment

# Build and push container
gcloud builds submit --tag gcr.io/PROJECT_ID/linear-integration

# Deploy with secrets
gcloud run deploy linear-integration \
  --image gcr.io/PROJECT_ID/linear-integration \
  --platform managed \
  --region us-central1 \
  --set-secrets="LINEAR_API_KEY=linear-api-key:latest,LINEAR_WEBHOOK_SECRET=linear-webhook-secret:latest" \
  --allow-unauthenticated
# cloudbuild.yaml
steps:
  - name: 'gcr.io/cloud-builders/docker'
    args: ['build', '-t', 'gcr.io/$PROJECT_ID/linear-integration', '.']

  - name: 'gcr.io/cloud-builders/docker'
    args: ['push', 'gcr.io/$PROJECT_ID/linear-integration']

  - name: 'gcr.io/cloud-builders/gcloud'
    args:
      - 'run'
      - 'deploy'
      - 'linear-integration'
      - '--image=gcr.io/$PROJECT_ID/linear-integration'
      - '--region=us-central1'
      - '--platform=managed'

Step 3: Railway Deployment

# Install Railway CLI
npm install -g @railway/cli

# Login and initialize
railway login
railway init

# Set environment variables
railway variables set LINEAR_API_KEY=lin_api_xxxx
railway variables set LINEAR_WEBHOOK_SECRET=secret

# Deploy
railway up

Step 4: Deployment Tracking in Linear

// scripts/notify-linear-deploy.ts
import { LinearClient } from "@linear/sdk";

interface DeploymentInfo {
  environment: "staging" | "production";
  version: string;
  commitSha: string;
  deployUrl: string;
  issueIdentifiers: string[];
}

async function notifyLinearDeploy(info: DeploymentInfo) {
  const client = new LinearClient({
    apiKey: process.env.LINEAR_API_KEY!,
  });

  // Add deployment comment to each issue
  for (const identifier of info.issueIdentifiers) {
    try {
      const issue = await client.issue(identifier);

      await client.createComment({
        issueId: issue.id,
        body: `## Deployed to ${info.environment}

**Version:** ${info.version}
**Commit:** \`${info.commitSha.slice(0, 7)}\`
**URL:** ${info.deployUrl}
**Time:** ${new Date().toISOString()}`,
      });

      // If production deploy, mark issue as done
      if (info.environment === "production") {
        const team = await issue.team;
        const states = await team?.states();
        const doneState = states?.nodes.find(s => s.type === "completed");

        if (doneState) {
          await client.updateIssue(issue.id, { stateId: doneState.id });
        }
      }

      console.log(`Updated ${identifier}`);
    } catch (error) {
      console.error(`Failed to update ${identifier}:`, error);
    }
  }
}

// Usage
notifyLinearDeploy({
  environment: "production",
  version: process.env.VERSION!,
  commitSha: process.env.COMMIT_SHA!,
  deployUrl: process.env.DEPLOY_URL!,
  issueIdentifiers: process.env.ISSUE_IDS!.split(","),
});

Step 5: GitHub Actions Deployment Workflow

# .github/workflows/deploy.yml
name: Deploy

on:
  push:
    branches: [main]

jobs:
  deploy:
    runs-on: ubuntu-latest

    steps:
      - uses: actions/checkout@v4
        with:
          fetch-depth: 0

      - name: Extract Linear Issues
        id: issues
        run: |
          # Get issues from commits since last deploy
          ISSUES=$(git log ${{ github.event.before }}..${{ github.sha }} --oneline | grep -oE '[A-Z]+-[0-9]+' | sort -u | tr '\n' ',' | sed 's/,$//')
          echo "ids=$ISSUES" >> $GITHUB_OUTPUT

      - name: Deploy to Production
        id: deploy
        run: |
          # Your deploy command here
          DEPLOY_URL=$(vercel --prod --token ${{ secrets.VERCEL_TOKEN }} | tail -1)
          echo "url=$DEPLOY_URL" >> $GITHUB_OUTPUT

      - name: Notify Linear
        run: |
          npx ts-node scripts/notify-linear-deploy.ts
        env:
          LINEAR_API_KEY: ${{ secrets.LINEAR_API_KEY }}
          VERSION: ${{ github.sha }}
          COMMIT_SHA: ${{ github.sha }}
          DEPLOY_URL: ${{ steps.deploy.outputs.url }}
          ISSUE_IDS: ${{ steps.issues.outputs.ids }}

Step 6: Rollback Tracking

// scripts/notify-linear-rollback.ts
import { LinearClient } from "@linear/sdk";

async function notifyRollback(options: {
  version: string;
  reason: string;
  affectedIssues: string[];
}) {
  const client = new LinearClient({
    apiKey: process.env.LINEAR_API_KEY!,
  });

  for (const identifier of options.affectedIssues) {
    const issue = await client.issue(identifier);

    // Reopen the issue
    const team = await issue.team;
    const states = await team?.states();
    const inProgressState = states?.nodes.find(s =>
      s.name.toLowerCase().includes("progress")
    );

    if (inProgressState) {
      await client.updateIssue(issue.id, { stateId: inProgressState.id });
    }

    await client.createComment({
      issueId: issue.id,
      body: `## Production Rollback

**Rolled back version:** ${options.version}
**Reason:** ${options.reason}
**Time:** ${new Date().toISOString()}

This issue has been reopened for investigation.`,
    });
  }
}

Deployment Checklist

[ ] Environment variables configured on platform
[ ] Secrets stored securely (not in code)
[ ] Webhook endpoint accessible from internet
[ ] Health check endpoint configured
[ ] Deployment notifications enabled
[ ] Rollback procedure documented

Error Handling

ErrorCauseSolution
Secret not foundMissing env varConfigure secrets on platform
Webhook timeoutLong processingIncrease function timeout
Connection refusedFirewall blockingCheck egress rules

Resources

Next Steps

Set up webhooks with linear-webhooks-events.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.