jeremylongshore

lindy-reference-architecture

@jeremylongshore/lindy-reference-architecture
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Reference architectures for Lindy AI integrations. Use when designing systems, planning architecture, or implementing production patterns. Trigger with phrases like "lindy architecture", "lindy design", "lindy system design", "lindy patterns".

Installation

$skills install @jeremylongshore/lindy-reference-architecture
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-reference-architecture/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-reference-architecture

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-reference-architecture description: | Reference architectures for Lindy AI integrations. Use when designing systems, planning architecture, or implementing production patterns. Trigger with phrases like "lindy architecture", "lindy design", "lindy system design", "lindy patterns". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Reference Architecture

Overview

Production-ready reference architectures for Lindy AI integrations.

Prerequisites

  • Understanding of system design principles
  • Familiarity with cloud services
  • Production requirements defined

Architecture Patterns

Pattern 1: Basic Integration

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│   Client    │────▶│   Backend   │────▶│   Lindy AI  │
│   (React)   │◀────│   (Node.js) │◀────│   API       │
└─────────────┘     └─────────────┘     └─────────────┘
// Simple backend integration
import express from 'express';
import { Lindy } from '@lindy-ai/sdk';

const app = express();
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

app.post('/api/chat', async (req, res) => {
  const { message, agentId } = req.body;
  const result = await lindy.agents.run(agentId, { input: message });
  res.json({ response: result.output });
});

Pattern 2: Event-Driven Architecture

┌──────────────────────────────────────────────────────────┐
│                     Event Bus (Redis/SQS)                │
└────┬─────────────────┬─────────────────┬────────────────┘
     │                 │                 │
     ▼                 ▼                 ▼
┌─────────┐      ┌─────────┐      ┌─────────┐
│ Worker  │      │ Worker  │      │ Worker  │
│ (Agent) │      │ (Agent) │      │ (Agent) │
└────┬────┘      └────┬────┘      └────┬────┘
     │                │                │
     └────────────────┼────────────────┘
                      ▼
              ┌─────────────┐
              │  Lindy AI   │
              │    API      │
              └─────────────┘
// Event-driven worker
import { Queue } from 'bullmq';
import { Lindy } from '@lindy-ai/sdk';

const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
const queue = new Queue('lindy-tasks');

// Producer
async function enqueueTask(agentId: string, input: string) {
  await queue.add('run-agent', { agentId, input });
}

// Consumer
const worker = new Worker('lindy-tasks', async (job) => {
  const { agentId, input } = job.data;
  const result = await lindy.agents.run(agentId, { input });

  // Emit result event
  await eventBus.publish('agent.completed', {
    jobId: job.id,
    result: result.output,
  });
});

Pattern 3: Multi-Agent Orchestration

                    ┌─────────────────┐
                    │   Orchestrator  │
                    │     Agent       │
                    └────────┬────────┘
                             │
           ┌─────────────────┼─────────────────┐
           │                 │                 │
           ▼                 ▼                 ▼
    ┌─────────────┐   ┌─────────────┐   ┌─────────────┐
    │  Research   │   │  Analysis   │   │  Writing    │
    │   Agent     │   │   Agent     │   │   Agent     │
    └─────────────┘   └─────────────┘   └─────────────┘
// Multi-agent orchestrator
class AgentOrchestrator {
  private lindy: Lindy;
  private agents: Record<string, string> = {
    research: 'agt_research',
    analysis: 'agt_analysis',
    writing: 'agt_writing',
    orchestrator: 'agt_orchestrator',
  };

  async execute(task: string): Promise<string> {
    // Step 1: Orchestrator plans the work
    const plan = await this.lindy.agents.run(this.agents.orchestrator, {
      input: `Plan steps for: ${task}`,
    });

    // Step 2: Execute each step
    const steps = JSON.parse(plan.output);
    const results: string[] = [];

    for (const step of steps) {
      const result = await this.lindy.agents.run(
        this.agents[step.agent],
        { input: step.task }
      );
      results.push(result.output);
    }

    // Step 3: Synthesize results
    const synthesis = await this.lindy.agents.run(this.agents.orchestrator, {
      input: `Synthesize: ${results.join('\n')}`,
    });

    return synthesis.output;
  }
}

Pattern 4: High-Availability Setup

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│   Load      │────▶│   App       │────▶│   Lindy     │
│   Balancer  │     │   Server 1  │     │   Primary   │
└─────────────┘     └─────────────┘     └──────┬──────┘
                                               │
                    ┌─────────────┐     ┌──────▼──────┐
                    │   App       │────▶│   Lindy     │
                    │   Server 2  │     │   Fallback  │
                    └─────────────┘     └─────────────┘
                                               │
┌─────────────┐     ┌─────────────┐            │
│   Cache     │◀────│   Shared    │◀───────────┘
│   (Redis)   │     │   State     │
└─────────────┘     └─────────────┘
// HA client with failover
class HALindyClient {
  private primary: Lindy;
  private fallback: Lindy;
  private cache: Redis;

  async run(agentId: string, input: string) {
    // Check cache first
    const cached = await this.cache.get(`${agentId}:${input}`);
    if (cached) return JSON.parse(cached);

    try {
      // Try primary
      const result = await this.primary.agents.run(agentId, { input });
      await this.cache.setex(`${agentId}:${input}`, 300, JSON.stringify(result));
      return result;
    } catch (error) {
      // Fallback
      console.warn('Primary failed, using fallback');
      return this.fallback.agents.run(agentId, { input });
    }
  }
}

Output

  • Architecture diagrams
  • Implementation patterns
  • HA/failover strategies
  • Multi-agent orchestration

Error Handling

PatternFailure ModeRecovery
BasicAPI errorRetry with backoff
Event-drivenWorker crashQueue retry
Multi-agentStep failureSkip or fallback
HAPrimary downAutomatic failover

Resources

Next Steps

Proceed to Flagship tier skills for enterprise features.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.