jeremylongshore

lindy-performance-tuning

@jeremylongshore/lindy-performance-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Lindy AI agent performance and response times. Use when improving latency, optimizing throughput, or reducing response times. Trigger with phrases like "lindy performance", "lindy slow", "optimize lindy", "lindy latency".

Installation

$skills install @jeremylongshore/lindy-performance-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-performance-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-performance-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-performance-tuning description: | Optimize Lindy AI agent performance and response times. Use when improving latency, optimizing throughput, or reducing response times. Trigger with phrases like "lindy performance", "lindy slow", "optimize lindy", "lindy latency". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Performance Tuning

Overview

Optimize Lindy AI agent performance for faster response times and higher throughput.

Prerequisites

  • Production Lindy integration
  • Baseline performance metrics
  • Access to monitoring tools

Instructions

Step 1: Measure Baseline Performance

import { Lindy } from '@lindy-ai/sdk';

interface PerformanceMetrics {
  avgLatency: number;
  p95Latency: number;
  p99Latency: number;
  throughput: number;
  errorRate: number;
}

async function measureBaseline(agentId: string, iterations = 100): Promise<PerformanceMetrics> {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  const latencies: number[] = [];
  let errors = 0;

  const start = Date.now();

  for (let i = 0; i < iterations; i++) {
    const runStart = Date.now();
    try {
      await lindy.agents.run(agentId, { input: 'Benchmark test' });
      latencies.push(Date.now() - runStart);
    } catch (e) {
      errors++;
    }
  }

  const totalTime = (Date.now() - start) / 1000;
  latencies.sort((a, b) => a - b);

  return {
    avgLatency: latencies.reduce((a, b) => a + b, 0) / latencies.length,
    p95Latency: latencies[Math.floor(latencies.length * 0.95)],
    p99Latency: latencies[Math.floor(latencies.length * 0.99)],
    throughput: iterations / totalTime,
    errorRate: errors / iterations,
  };
}

Step 2: Optimize Agent Instructions

// BEFORE: Verbose instructions (slow)
const slowAgent = {
  instructions: `
    You are a helpful assistant that should carefully consider
    each request and provide detailed, comprehensive responses.
    Think step by step about each query. Consider all possibilities.
    Provide examples and explanations for everything.
  `,
};

// AFTER: Concise instructions (fast)
const fastAgent = {
  instructions: `
    Be concise. Answer directly. Skip pleasantries.
    Format: [Answer] (1-2 sentences)
  `,
  config: {
    maxTokens: 100, // Limit response length
  },
};

Step 3: Enable Streaming

// Non-streaming (waits for full response)
const result = await lindy.agents.run(agentId, { input });
console.log(result.output); // Logs after full response

// Streaming (immediate partial responses)
const stream = await lindy.agents.runStream(agentId, { input });

for await (const chunk of stream) {
  process.stdout.write(chunk.delta); // Real-time output
}

Step 4: Implement Caching

import NodeCache from 'node-cache';

const cache = new NodeCache({ stdTTL: 300 }); // 5 minute TTL

async function runWithCache(agentId: string, input: string) {
  const cacheKey = `${agentId}:${crypto.createHash('md5').update(input).digest('hex')}`;

  // Check cache
  const cached = cache.get(cacheKey);
  if (cached) {
    return cached;
  }

  // Run agent
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  const result = await lindy.agents.run(agentId, { input });

  // Cache result
  cache.set(cacheKey, result);

  return result;
}

Step 5: Optimize Concurrency

// Poor: Sequential execution
for (const input of inputs) {
  await lindy.agents.run(agentId, { input }); // Slow!
}

// Better: Parallel with controlled concurrency
import pLimit from 'p-limit';

const limit = pLimit(5); // Max 5 concurrent

const results = await Promise.all(
  inputs.map(input =>
    limit(() => lindy.agents.run(agentId, { input }))
  )
);

Performance Checklist

[ ] Baseline metrics captured
[ ] Instructions are concise
[ ] Max tokens configured appropriately
[ ] Streaming enabled for long responses
[ ] Caching implemented for repeated queries
[ ] Concurrency optimized
[ ] Connection pooling enabled
[ ] Timeout values tuned

Output

  • Baseline performance metrics
  • Optimized agent configuration
  • Caching implementation
  • Concurrency patterns

Error Handling

IssueCauseSolution
High latencyVerbose instructionsSimplify prompts
TimeoutsResponse too longAdd max tokens
ThrottlingToo concurrentLimit parallelism

Examples

Complete Performance Client

class PerformantLindyClient {
  private lindy: Lindy;
  private cache: NodeCache;
  private limiter: any;

  constructor() {
    this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
    this.cache = new NodeCache({ stdTTL: 300 });
    this.limiter = pLimit(5);
  }

  async run(agentId: string, input: string) {
    const cacheKey = `${agentId}:${input}`;
    const cached = this.cache.get(cacheKey);
    if (cached) return cached;

    const result = await this.limiter(() =>
      this.lindy.agents.run(agentId, { input })
    );

    this.cache.set(cacheKey, result);
    return result;
  }
}

Resources

Next Steps

Proceed to lindy-cost-tuning for cost optimization.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.