jeremylongshore

lindy-observability

@jeremylongshore/lindy-observability
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing".

Installation

$skills install @jeremylongshore/lindy-observability
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-observability/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-observability

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-observability description: | Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Observability

Overview

Implement comprehensive observability for Lindy AI integrations.

Prerequisites

  • Production Lindy integration
  • Observability stack (Datadog, New Relic, Prometheus, etc.)
  • Log aggregation system

Instructions

Step 1: Structured Logging

// lib/logger.ts
import pino from 'pino';

export const logger = pino({
  level: process.env.LOG_LEVEL || 'info',
  formatters: {
    level: (label) => ({ level: label }),
  },
  base: {
    service: 'lindy-integration',
    environment: process.env.NODE_ENV,
  },
});

// Lindy-specific logger
export function lindyLogger(operation: string) {
  return logger.child({ component: 'lindy', operation });
}

Step 2: Instrumented Client

// lib/instrumented-lindy.ts
import { Lindy } from '@lindy-ai/sdk';
import { lindyLogger } from './logger';
import { metrics } from './metrics';
import { tracer } from './tracer';

export class InstrumentedLindy {
  private lindy: Lindy;

  constructor() {
    this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
  }

  async runAgent(agentId: string, input: string) {
    const log = lindyLogger('runAgent');
    const span = tracer.startSpan('lindy.agent.run');

    const startTime = Date.now();

    try {
      span.setAttributes({
        'lindy.agent_id': agentId,
        'lindy.input_length': input.length,
      });

      log.info({ agentId, inputLength: input.length }, 'Starting agent run');

      const result = await this.lindy.agents.run(agentId, { input });

      const duration = Date.now() - startTime;

      // Record metrics
      metrics.histogram('lindy.agent.duration', duration, { agentId });
      metrics.counter('lindy.agent.success', 1, { agentId });

      // Log success
      log.info({
        agentId,
        duration,
        outputLength: result.output.length,
      }, 'Agent run completed');

      span.setAttributes({
        'lindy.duration_ms': duration,
        'lindy.output_length': result.output.length,
        'lindy.status': 'success',
      });

      return result;
    } catch (error: any) {
      const duration = Date.now() - startTime;

      // Record error metrics
      metrics.counter('lindy.agent.error', 1, {
        agentId,
        errorCode: error.code,
      });

      // Log error
      log.error({
        agentId,
        duration,
        error: error.message,
        errorCode: error.code,
      }, 'Agent run failed');

      span.setAttributes({
        'lindy.status': 'error',
        'lindy.error': error.message,
      });
      span.recordException(error);

      throw error;
    } finally {
      span.end();
    }
  }
}

Step 3: Metrics Collection

// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';

const registry = new Registry();

export const metrics = {
  agentDuration: new Histogram({
    name: 'lindy_agent_duration_ms',
    help: 'Duration of Lindy agent runs in milliseconds',
    labelNames: ['agent_id', 'status'],
    buckets: [100, 500, 1000, 2000, 5000, 10000, 30000],
    registers: [registry],
  }),

  agentRuns: new Counter({
    name: 'lindy_agent_runs_total',
    help: 'Total number of Lindy agent runs',
    labelNames: ['agent_id', 'status'],
    registers: [registry],
  }),

  apiCalls: new Counter({
    name: 'lindy_api_calls_total',
    help: 'Total Lindy API calls',
    labelNames: ['endpoint', 'status'],
    registers: [registry],
  }),

  // Helper methods
  histogram(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Histogram;
    metric?.observe(labels, value);
  },

  counter(name: string, value: number, labels: Record<string, string>) {
    const metric = registry.getSingleMetric(name) as Counter;
    metric?.inc(labels, value);
  },
};

// Metrics endpoint
export function getMetrics(): Promise<string> {
  return registry.metrics();
}

Step 4: Distributed Tracing

// lib/tracer.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
import { NodeTracerProvider } from '@opentelemetry/sdk-trace-node';
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-base';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';

const provider = new NodeTracerProvider();

provider.addSpanProcessor(
  new SimpleSpanProcessor(
    new OTLPTraceExporter({
      url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
    })
  )
);

provider.register();

export const tracer = trace.getTracer('lindy-integration');

Step 5: Dashboard Configuration

# grafana/dashboards/lindy.json
{
  "title": "Lindy AI Monitoring",
  "panels": [
    {
      "title": "Agent Runs per Minute",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total[1m])",
          "legendFormat": "{{agent_id}}"
        }
      ]
    },
    {
      "title": "P95 Latency",
      "type": "stat",
      "targets": [
        {
          "expr": "histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m]))"
        }
      ]
    },
    {
      "title": "Error Rate",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(lindy_agent_runs_total{status='error'}[5m]) / rate(lindy_agent_runs_total[5m])"
        }
      ]
    }
  ]
}

Output

  • Structured logging
  • Prometheus metrics
  • Distributed tracing
  • Grafana dashboards
  • Alerting rules

Error Handling

IssueCauseSolution
Missing tracesOTEL not configuredSet OTEL endpoint
Metrics not visibleWrong labelsCheck label names
Logs not searchableMissing contextAdd structured fields

Examples

Alert Configuration

# alerts/lindy.yml
groups:
  - name: lindy
    rules:
      - alert: LindyHighErrorRate
        expr: rate(lindy_agent_runs_total{status="error"}[5m]) > 0.1
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High Lindy error rate"

      - alert: LindyHighLatency
        expr: histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m])) > 10000
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Lindy P95 latency above 10s"

Resources

Next Steps

Proceed to lindy-incident-runbook for incident response.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.