Configure Lindy AI across development, staging, and production environments. Use when setting up multi-environment deployments, configuring per-environment secrets, or implementing environment-specific Lindy configurations. Trigger with phrases like "lindy environments", "lindy staging", "lindy dev prod", "lindy environment setup", "lindy config by env".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: lindy-multi-env-setup description: | Configure Lindy AI across development, staging, and production environments. Use when setting up multi-environment deployments, configuring per-environment secrets, or implementing environment-specific Lindy configurations. Trigger with phrases like "lindy environments", "lindy staging", "lindy dev prod", "lindy environment setup", "lindy config by env". allowed-tools: Read, Write, Edit, Bash(aws:), Bash(gcloud:), Bash(vault:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Lindy Multi Env Setup
Overview
Configure Lindy AI across development, staging, and production environments.
Prerequisites
- Separate Lindy API keys per environment
- Secret management solution (Vault, AWS Secrets Manager, etc.)
- CI/CD pipeline with environment variables
- Environment detection in application
Instructions
Step 1: Create Environment Configuration
// config/lindy.ts
interface LindyConfig {
apiKey: string;
environment: 'development' | 'staging' | 'production';
baseUrl?: string;
timeout: number;
retries: number;
}
const configs: Record<string, LindyConfig> = {
development: {
apiKey: process.env.LINDY_DEV_API_KEY!,
environment: 'development',
timeout: 60000,
retries: 1,
},
staging: {
apiKey: process.env.LINDY_STAGING_API_KEY!,
environment: 'staging',
timeout: 45000,
retries: 2,
},
production: {
apiKey: process.env.LINDY_PROD_API_KEY!,
environment: 'production',
timeout: 30000,
retries: 3,
},
};
export function getLindyConfig(): LindyConfig {
const env = process.env.NODE_ENV || 'development';
return configs[env] || configs.development;
}
Step 2: Implement Environment Detection
// lib/lindy-client.ts
import { Lindy } from '@lindy-ai/sdk';
import { getLindyConfig } from '../config/lindy';
let client: Lindy | null = null;
export function getLindyClient(): Lindy {
if (!client) {
const config = getLindyConfig();
// Validate environment
if (config.environment === 'production') {
if (!config.apiKey.startsWith('lnd_prod_')) {
throw new Error('Production requires production API key');
}
}
client = new Lindy({
apiKey: config.apiKey,
timeout: config.timeout,
retries: config.retries,
});
}
return client;
}
Step 3: Configure Secrets by Environment
# AWS Secrets Manager structure
secrets/
├── lindy/development
│ └── api_key: lnd_dev_xxx
├── lindy/staging
│ └── api_key: lnd_stg_xxx
└── lindy/production
└── api_key: lnd_prod_xxx
// secrets/lindy.ts
import { SecretsManager } from '@aws-sdk/client-secrets-manager';
export async function getLindyApiKey(env: string): Promise<string> {
const client = new SecretsManager({ region: 'us-east-1' });
const response = await client.getSecretValue({
SecretId: `lindy/${env}`,
});
const secret = JSON.parse(response.SecretString!);
return secret.api_key;
}
Step 4: Environment-Specific Agents
// agents/config.ts
interface AgentMapping {
development: string;
staging: string;
production: string;
}
const agentMappings: Record<string, AgentMapping> = {
support: {
development: 'agt_dev_support',
staging: 'agt_stg_support',
production: 'agt_prod_support',
},
sales: {
development: 'agt_dev_sales',
staging: 'agt_stg_sales',
production: 'agt_prod_sales',
},
};
export function getAgentId(agentName: string): string {
const env = process.env.NODE_ENV || 'development';
const mapping = agentMappings[agentName];
if (!mapping) {
throw new Error(`Unknown agent: ${agentName}`);
}
return mapping[env as keyof AgentMapping];
}
Step 5: Add Environment Guards
// guards/production.ts
export function requireProduction(): void {
if (process.env.NODE_ENV !== 'production') {
throw new Error('This operation requires production environment');
}
}
export function preventProduction(): void {
if (process.env.NODE_ENV === 'production') {
throw new Error('This operation is not allowed in production');
}
}
// Usage
async function dangerousOperation() {
preventProduction();
// ... destructive test operation
}
async function productionOnlyOperation() {
requireProduction();
// ... production-only logic
}
Output
- Multi-environment configuration
- Environment detection logic
- Secure secret management
- Environment-specific agents
- Production safeguards
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Wrong key for env | Config error | Validate key prefix |
| Secret not found | Not provisioned | Create in secrets manager |
| Agent not found | Wrong environment | Check agent mapping |
Examples
Complete Environment Setup
// index.ts
import { getLindyClient } from './lib/lindy-client';
import { getAgentId } from './agents/config';
async function main() {
const lindy = getLindyClient();
const agentId = getAgentId('support');
console.log(`Environment: ${process.env.NODE_ENV}`);
console.log(`Agent: ${agentId}`);
const result = await lindy.agents.run(agentId, {
input: 'Test message',
});
console.log('Response:', result.output);
}
main().catch(console.error);
Resources
Next Steps
Proceed to lindy-observability for monitoring setup.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
