jeremylongshore

lindy-local-dev-loop

@jeremylongshore/lindy-local-dev-loop
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Set up local development workflow for Lindy AI agents. Use when configuring local testing, hot reload, or development environment. Trigger with phrases like "lindy local dev", "lindy development", "lindy hot reload", "test lindy locally".

Installation

$skills install @jeremylongshore/lindy-local-dev-loop
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-local-dev-loop/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-local-dev-loop

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-local-dev-loop description: | Set up local development workflow for Lindy AI agents. Use when configuring local testing, hot reload, or development environment. Trigger with phrases like "lindy local dev", "lindy development", "lindy hot reload", "test lindy locally". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(node:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Local Dev Loop

Overview

Configure efficient local development workflow for Lindy AI agent development.

Prerequisites

  • Completed lindy-install-auth setup
  • Node.js 18+ with npm/pnpm
  • Code editor with TypeScript support

Instructions

Step 1: Set Up Project Structure

mkdir lindy-agents && cd lindy-agents
npm init -y
npm install @lindy-ai/sdk typescript ts-node dotenv
npm install -D @types/node nodemon

Step 2: Configure TypeScript

// tsconfig.json
{
  "compilerOptions": {
    "target": "ES2022",
    "module": "NodeNext",
    "moduleResolution": "NodeNext",
    "outDir": "./dist",
    "strict": true,
    "esModuleInterop": true
  },
  "include": ["src/**/*"]
}

Step 3: Create Development Script

// package.json scripts
{
  "scripts": {
    "dev": "nodemon --exec ts-node src/index.ts",
    "build": "tsc",
    "start": "node dist/index.js",
    "test:agent": "ts-node src/test-agent.ts"
  }
}

Step 4: Create Agent Test Harness

// src/test-agent.ts
import 'dotenv/config';
import { Lindy } from '@lindy-ai/sdk';

const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

async function testAgent(agentId: string, input: string) {
  console.log(`Testing agent ${agentId} with: "${input}"`);
  const start = Date.now();

  const result = await lindy.agents.run(agentId, { input });

  console.log(`Response (${Date.now() - start}ms): ${result.output}`);
  return result;
}

// Run test
testAgent(process.argv[2], process.argv[3] || 'Hello!');

Output

  • Configured development environment
  • Hot reload enabled for agent code
  • Test harness for rapid iteration
  • TypeScript support with type checking

Error Handling

ErrorCauseSolution
ts-node not foundDev deps missingnpm install -D ts-node
ENV not loadeddotenv not configuredAdd import 'dotenv/config'
Type errorsMissing typesnpm install -D @types/node

Examples

Watch Mode Development

# Start development with hot reload
npm run dev

# Test specific agent
npm run test:agent agt_abc123 "Test input"

Environment Setup

# .env file
LINDY_API_KEY=your-api-key
LINDY_ENVIRONMENT=development

Resources

Next Steps

Proceed to lindy-sdk-patterns for SDK best practices.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.