jeremylongshore

lindy-deploy-integration

@jeremylongshore/lindy-deploy-integration
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Configure deployment pipelines for Lindy AI integrations. Use when deploying to production, setting up staging environments, or automating agent deployments. Trigger with phrases like "deploy lindy", "lindy deployment", "lindy production deploy", "release lindy agents".

Installation

$skills install @jeremylongshore/lindy-deploy-integration
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-deploy-integration/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-deploy-integration

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-deploy-integration description: | Configure deployment pipelines for Lindy AI integrations. Use when deploying to production, setting up staging environments, or automating agent deployments. Trigger with phrases like "deploy lindy", "lindy deployment", "lindy production deploy", "release lindy agents". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(docker:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Deploy Integration

Overview

Configure deployment pipelines for Lindy AI agent integrations.

Prerequisites

  • CI pipeline configured (see lindy-ci-integration)
  • Production Lindy API key
  • Deployment target (Vercel, AWS, GCP, etc.)

Instructions

Step 1: Create Deployment Workflow

# .github/workflows/lindy-deploy.yml
name: Deploy Lindy Integration

on:
  push:
    branches: [main]
  workflow_dispatch:

env:
  LINDY_ENVIRONMENT: production

jobs:
  deploy:
    runs-on: ubuntu-latest
    environment: production

    steps:
      - uses: actions/checkout@v4

      - name: Setup Node.js
        uses: actions/setup-node@v4
        with:
          node-version: '20'
          cache: 'npm'

      - name: Install dependencies
        run: npm ci

      - name: Build
        run: npm run build

      - name: Run pre-deploy checks
        run: npm run predeploy
        env:
          LINDY_API_KEY: ${{ secrets.LINDY_PROD_API_KEY }}

      - name: Deploy to Vercel
        uses: amondnet/vercel-action@v25
        with:
          vercel-token: ${{ secrets.VERCEL_TOKEN }}
          vercel-org-id: ${{ secrets.VERCEL_ORG_ID }}
          vercel-project-id: ${{ secrets.VERCEL_PROJECT_ID }}
          vercel-args: '--prod'

      - name: Sync Lindy agents
        run: npm run sync:agents
        env:
          LINDY_API_KEY: ${{ secrets.LINDY_PROD_API_KEY }}

      - name: Notify Slack
        if: success()
        uses: slackapi/slack-github-action@v1
        with:
          payload: |
            {
              "text": "Lindy integration deployed successfully"
            }

Step 2: Create Agent Sync Script

// scripts/sync-agents.ts
import { Lindy } from '@lindy-ai/sdk';
import fs from 'fs';

interface AgentConfig {
  id?: string;
  name: string;
  instructions: string;
  tools: string[];
}

async function syncAgents() {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

  // Load agent configurations
  const configPath = './agents/config.json';
  const configs: AgentConfig[] = JSON.parse(fs.readFileSync(configPath, 'utf-8'));

  for (const config of configs) {
    if (config.id) {
      // Update existing agent
      await lindy.agents.update(config.id, {
        name: config.name,
        instructions: config.instructions,
        tools: config.tools,
      });
      console.log(`Updated agent: ${config.id}`);
    } else {
      // Create new agent
      const agent = await lindy.agents.create({
        name: config.name,
        instructions: config.instructions,
        tools: config.tools,
      });
      console.log(`Created agent: ${agent.id}`);

      // Update config with new ID
      config.id = agent.id;
    }
  }

  // Save updated config
  fs.writeFileSync(configPath, JSON.stringify(configs, null, 2));
}

syncAgents().catch(console.error);

Step 3: Configure Environments

# .github/workflows/lindy-deploy-staging.yml
name: Deploy to Staging

on:
  push:
    branches: [develop]

jobs:
  deploy:
    environment: staging
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - run: npm ci
      - run: npm run build
      - run: npm run deploy:staging
        env:
          LINDY_API_KEY: ${{ secrets.LINDY_STAGING_API_KEY }}

Step 4: Add Rollback Capability

// scripts/rollback.ts
import { Lindy } from '@lindy-ai/sdk';

async function rollback(agentId: string, version: string) {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

  // Get version history
  const versions = await lindy.agents.versions.list(agentId);
  const targetVersion = versions.find(v => v.id === version);

  if (!targetVersion) {
    throw new Error(`Version ${version} not found`);
  }

  // Restore to previous version
  await lindy.agents.versions.restore(agentId, version);
  console.log(`Rolled back agent ${agentId} to version ${version}`);
}

rollback(process.argv[2], process.argv[3]).catch(console.error);

Output

  • Automated deployment pipeline
  • Agent sync mechanism
  • Environment-specific deployments
  • Rollback capability

Error Handling

IssueCauseSolution
Deploy failedBuild errorCheck build logs
Agent sync failedInvalid configValidate JSON
Rollback failedVersion missingCheck version history

Examples

Docker Deployment

# Dockerfile
FROM node:20-alpine
WORKDIR /app
COPY package*.json ./
RUN npm ci --production
COPY dist ./dist
ENV NODE_ENV=production
CMD ["node", "dist/index.js"]
# Deploy job
- name: Build and push Docker image
  run: |
    docker build -t my-lindy-app:${{ github.sha }} .
    docker push my-lindy-app:${{ github.sha }}

Resources

Next Steps

Proceed to lindy-webhooks-events for event handling.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.