Configure deployment pipelines for Lindy AI integrations. Use when deploying to production, setting up staging environments, or automating agent deployments. Trigger with phrases like "deploy lindy", "lindy deployment", "lindy production deploy", "release lindy agents".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: lindy-deploy-integration description: | Configure deployment pipelines for Lindy AI integrations. Use when deploying to production, setting up staging environments, or automating agent deployments. Trigger with phrases like "deploy lindy", "lindy deployment", "lindy production deploy", "release lindy agents". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(docker:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Lindy Deploy Integration
Overview
Configure deployment pipelines for Lindy AI agent integrations.
Prerequisites
- CI pipeline configured (see
lindy-ci-integration) - Production Lindy API key
- Deployment target (Vercel, AWS, GCP, etc.)
Instructions
Step 1: Create Deployment Workflow
# .github/workflows/lindy-deploy.yml
name: Deploy Lindy Integration
on:
push:
branches: [main]
workflow_dispatch:
env:
LINDY_ENVIRONMENT: production
jobs:
deploy:
runs-on: ubuntu-latest
environment: production
steps:
- uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'npm'
- name: Install dependencies
run: npm ci
- name: Build
run: npm run build
- name: Run pre-deploy checks
run: npm run predeploy
env:
LINDY_API_KEY: ${{ secrets.LINDY_PROD_API_KEY }}
- name: Deploy to Vercel
uses: amondnet/vercel-action@v25
with:
vercel-token: ${{ secrets.VERCEL_TOKEN }}
vercel-org-id: ${{ secrets.VERCEL_ORG_ID }}
vercel-project-id: ${{ secrets.VERCEL_PROJECT_ID }}
vercel-args: '--prod'
- name: Sync Lindy agents
run: npm run sync:agents
env:
LINDY_API_KEY: ${{ secrets.LINDY_PROD_API_KEY }}
- name: Notify Slack
if: success()
uses: slackapi/slack-github-action@v1
with:
payload: |
{
"text": "Lindy integration deployed successfully"
}
Step 2: Create Agent Sync Script
// scripts/sync-agents.ts
import { Lindy } from '@lindy-ai/sdk';
import fs from 'fs';
interface AgentConfig {
id?: string;
name: string;
instructions: string;
tools: string[];
}
async function syncAgents() {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
// Load agent configurations
const configPath = './agents/config.json';
const configs: AgentConfig[] = JSON.parse(fs.readFileSync(configPath, 'utf-8'));
for (const config of configs) {
if (config.id) {
// Update existing agent
await lindy.agents.update(config.id, {
name: config.name,
instructions: config.instructions,
tools: config.tools,
});
console.log(`Updated agent: ${config.id}`);
} else {
// Create new agent
const agent = await lindy.agents.create({
name: config.name,
instructions: config.instructions,
tools: config.tools,
});
console.log(`Created agent: ${agent.id}`);
// Update config with new ID
config.id = agent.id;
}
}
// Save updated config
fs.writeFileSync(configPath, JSON.stringify(configs, null, 2));
}
syncAgents().catch(console.error);
Step 3: Configure Environments
# .github/workflows/lindy-deploy-staging.yml
name: Deploy to Staging
on:
push:
branches: [develop]
jobs:
deploy:
environment: staging
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm run build
- run: npm run deploy:staging
env:
LINDY_API_KEY: ${{ secrets.LINDY_STAGING_API_KEY }}
Step 4: Add Rollback Capability
// scripts/rollback.ts
import { Lindy } from '@lindy-ai/sdk';
async function rollback(agentId: string, version: string) {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
// Get version history
const versions = await lindy.agents.versions.list(agentId);
const targetVersion = versions.find(v => v.id === version);
if (!targetVersion) {
throw new Error(`Version ${version} not found`);
}
// Restore to previous version
await lindy.agents.versions.restore(agentId, version);
console.log(`Rolled back agent ${agentId} to version ${version}`);
}
rollback(process.argv[2], process.argv[3]).catch(console.error);
Output
- Automated deployment pipeline
- Agent sync mechanism
- Environment-specific deployments
- Rollback capability
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Deploy failed | Build error | Check build logs |
| Agent sync failed | Invalid config | Validate JSON |
| Rollback failed | Version missing | Check version history |
Examples
Docker Deployment
# Dockerfile
FROM node:20-alpine
WORKDIR /app
COPY package*.json ./
RUN npm ci --production
COPY dist ./dist
ENV NODE_ENV=production
CMD ["node", "dist/index.js"]
# Deploy job
- name: Build and push Docker image
run: |
docker build -t my-lindy-app:${{ github.sha }} .
docker push my-lindy-app:${{ github.sha }}
Resources
Next Steps
Proceed to lindy-webhooks-events for event handling.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
