Comprehensive debugging toolkit for Lindy AI agents. Use when investigating complex issues, collecting diagnostics, or preparing support tickets. Trigger with phrases like "lindy debug", "lindy diagnostics", "lindy support bundle", "investigate lindy issue".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: lindy-debug-bundle description: | Comprehensive debugging toolkit for Lindy AI agents. Use when investigating complex issues, collecting diagnostics, or preparing support tickets. Trigger with phrases like "lindy debug", "lindy diagnostics", "lindy support bundle", "investigate lindy issue". allowed-tools: Read, Write, Edit, Bash(curl:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Lindy Debug Bundle
Overview
Comprehensive debugging toolkit for collecting diagnostics and resolving issues.
Prerequisites
- Lindy SDK installed
- Access to logs
- curl installed for API testing
Instructions
Step 1: Collect Environment Info
#!/bin/bash
echo "=== Lindy Debug Bundle ==="
echo "Date: $(date -u +%Y-%m-%dT%H:%M:%SZ)"
echo "Node: $(node -v)"
echo "npm: $(npm -v)"
echo ""
echo "=== SDK Version ==="
npm list @lindy-ai/sdk 2>/dev/null || echo "SDK not found"
echo ""
echo "=== Environment ==="
echo "LINDY_API_KEY: ${LINDY_API_KEY:+[SET]}"
echo "LINDY_ENVIRONMENT: ${LINDY_ENVIRONMENT:-[NOT SET]}"
echo ""
Step 2: Test API Connectivity
echo "=== API Connectivity ==="
curl -s -o /dev/null -w "Status: %{http_code}\nTime: %{time_total}s\n" \
-H "Authorization: Bearer $LINDY_API_KEY" \
https://api.lindy.ai/v1/users/me
echo ""
Step 3: Collect Agent State
// debug/collect-agent-state.ts
import { Lindy } from '@lindy-ai/sdk';
async function collectAgentState(agentId: string) {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
const bundle = {
timestamp: new Date().toISOString(),
agent: await lindy.agents.get(agentId),
runs: await lindy.runs.list({ agentId, limit: 10 }),
automations: await lindy.automations.list({ agentId }),
};
return bundle;
}
// Export for support
const state = await collectAgentState(process.argv[2]);
console.log(JSON.stringify(state, null, 2));
Step 4: Check Run History
async function analyzeRuns(agentId: string) {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
const runs = await lindy.runs.list({ agentId, limit: 50 });
const analysis = {
total: runs.length,
successful: runs.filter(r => r.status === 'completed').length,
failed: runs.filter(r => r.status === 'failed').length,
avgDuration: runs.reduce((a, r) => a + r.duration, 0) / runs.length,
recentErrors: runs
.filter(r => r.status === 'failed')
.slice(0, 5)
.map(r => ({ id: r.id, error: r.error })),
};
return analysis;
}
Step 5: Generate Support Bundle
async function generateSupportBundle(agentId: string) {
const bundle = {
generated: new Date().toISOString(),
environment: {
node: process.version,
platform: process.platform,
sdk: require('@lindy-ai/sdk/package.json').version,
},
agent: await collectAgentState(agentId),
analysis: await analyzeRuns(agentId),
};
const filename = `lindy-debug-${Date.now()}.json`;
fs.writeFileSync(filename, JSON.stringify(bundle, null, 2));
console.log(`Bundle saved to: ${filename}`);
return filename;
}
Output
- Environment diagnostic information
- API connectivity test results
- Agent state and configuration
- Run history analysis
- Exportable support bundle
Error Handling
| Issue | Diagnostic | Resolution |
|---|---|---|
| Auth fails | Check API key | Regenerate key |
| Timeout | Check network | Verify firewall |
| Agent missing | Check environment | Verify agent ID |
Examples
Quick Health Check
# One-liner health check
curl -s -H "Authorization: Bearer $LINDY_API_KEY" \
https://api.lindy.ai/v1/users/me | jq '.email'
Full Debug Script
#!/bin/bash
# save as lindy-debug.sh
echo "Collecting Lindy debug info..."
npx ts-node debug/collect-agent-state.ts $1 > debug-bundle.json
echo "Bundle saved to debug-bundle.json"
Resources
Next Steps
Proceed to lindy-rate-limits for rate limit management.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
