jeremylongshore

lindy-cost-tuning

@jeremylongshore/lindy-cost-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Lindy AI costs and manage usage efficiently. Use when reducing costs, analyzing usage patterns, or optimizing budget allocation. Trigger with phrases like "lindy cost", "lindy billing", "reduce lindy spend", "lindy budget".

Installation

$skills install @jeremylongshore/lindy-cost-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-cost-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-cost-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-cost-tuning description: | Optimize Lindy AI costs and manage usage efficiently. Use when reducing costs, analyzing usage patterns, or optimizing budget allocation. Trigger with phrases like "lindy cost", "lindy billing", "reduce lindy spend", "lindy budget". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Cost Tuning

Overview

Optimize Lindy AI costs while maintaining service quality.

Prerequisites

  • Access to Lindy billing dashboard
  • Usage data available
  • Understanding of pricing tiers

Instructions

Step 1: Analyze Current Usage

import { Lindy } from '@lindy-ai/sdk';

async function analyzeUsage() {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

  const usage = await lindy.usage.monthly({
    startDate: '2025-01-01',
    endDate: '2025-01-31',
  });

  const analysis = {
    totalRuns: usage.agentRuns.total,
    totalCost: usage.billing.total,
    costPerRun: usage.billing.total / usage.agentRuns.total,
    topAgents: usage.byAgent
      .sort((a: any, b: any) => b.cost - a.cost)
      .slice(0, 5),
    peakHours: usage.byHour
      .sort((a: any, b: any) => b.runs - a.runs)
      .slice(0, 5),
  };

  console.log('Usage Analysis:', analysis);
  return analysis;
}

Step 2: Implement Usage Budgets

interface Budget {
  monthly: number;
  daily: number;
  perAgent: number;
}

const budget: Budget = {
  monthly: 500, // $500/month
  daily: 20,    // $20/day
  perAgent: 50, // $50/agent/month
};

async function checkBudget(): Promise<boolean> {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

  const usage = await lindy.usage.current();

  if (usage.billing.monthly >= budget.monthly) {
    console.error('Monthly budget exceeded!');
    await sendAlert('Budget exceeded', { usage, budget });
    return false;
  }

  if (usage.billing.today >= budget.daily) {
    console.warn('Daily budget exceeded');
    return false;
  }

  return true;
}

Step 3: Optimize Agent Costs

// Cost-optimized agent configuration
const optimizedAgent = {
  name: 'Cost-Efficient Agent',
  instructions: 'Be brief. Answer in 1-2 sentences.',
  config: {
    model: 'gpt-3.5-turbo', // Cheaper model
    maxTokens: 100,         // Limit output
    temperature: 0.3,       // Less creative = fewer tokens
  },
};

// Route simple queries to cheaper agents
async function routeQuery(input: string) {
  const isSimple = input.length < 100 && !input.includes('analyze');

  const agentId = isSimple
    ? 'agt_cheap_simple'
    : 'agt_expensive_complex';

  return lindy.agents.run(agentId, { input });
}

Step 4: Implement Caching to Reduce Calls

import NodeCache from 'node-cache';

const cache = new NodeCache({ stdTTL: 3600 }); // 1 hour cache

async function cachedRun(agentId: string, input: string) {
  const cacheKey = `${agentId}:${input}`;

  // Check cache first (free!)
  const cached = cache.get(cacheKey);
  if (cached) {
    console.log('Cache hit - $0');
    return cached;
  }

  // Only call API if cache miss
  const result = await lindy.agents.run(agentId, { input });
  cache.set(cacheKey, result);

  console.log('Cache miss - API call made');
  return result;
}

Step 5: Set Up Cost Alerts

async function setupCostAlerts() {
  const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

  // Alert at 80% of budget
  await lindy.billing.alerts.create({
    threshold: 400, // $400 of $500 budget
    type: 'monthly',
    channels: ['email', 'slack'],
    message: 'Approaching monthly budget limit',
  });

  // Daily anomaly detection
  await lindy.billing.alerts.create({
    threshold: 50, // 50% above average
    type: 'anomaly',
    channels: ['slack'],
    message: 'Unusual spending detected',
  });
}

Cost Optimization Checklist

[ ] Usage analysis completed
[ ] Budget limits defined
[ ] Cost alerts configured
[ ] Caching implemented
[ ] Cheaper models for simple tasks
[ ] Max tokens configured
[ ] Unused agents identified and disabled
[ ] Peak usage patterns analyzed

Output

  • Usage analysis report
  • Budget enforcement
  • Cost-optimized agents
  • Caching for reduced API calls
  • Alert system

Error Handling

IssueCauseSolution
Budget exceededHigh usageThrottle or pause
Cost spikeAnomalyInvestigate and alert
Cache ineffectiveLow hit rateTune TTL

Examples

Monthly Cost Report

async function generateCostReport() {
  const usage = await analyzeUsage();

  const report = `
# Lindy Cost Report - ${new Date().toISOString().slice(0, 7)}

## Summary
- Total Runs: ${usage.totalRuns}
- Total Cost: $${usage.totalCost.toFixed(2)}
- Cost per Run: $${usage.costPerRun.toFixed(4)}

## Top Agents by Cost
${usage.topAgents.map((a: any) => `- ${a.name}: $${a.cost.toFixed(2)}`).join('\n')}

## Recommendations
${usage.costPerRun > 0.05 ? '- Consider cheaper models for simple tasks' : ''}
${usage.cacheHitRate < 0.3 ? '- Improve caching strategy' : ''}
  `;

  return report;
}

Resources

Next Steps

Proceed to lindy-reference-architecture for architecture patterns.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.