Optimize Lindy AI costs and manage usage efficiently. Use when reducing costs, analyzing usage patterns, or optimizing budget allocation. Trigger with phrases like "lindy cost", "lindy billing", "reduce lindy spend", "lindy budget".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: lindy-cost-tuning description: | Optimize Lindy AI costs and manage usage efficiently. Use when reducing costs, analyzing usage patterns, or optimizing budget allocation. Trigger with phrases like "lindy cost", "lindy billing", "reduce lindy spend", "lindy budget". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Lindy Cost Tuning
Overview
Optimize Lindy AI costs while maintaining service quality.
Prerequisites
- Access to Lindy billing dashboard
- Usage data available
- Understanding of pricing tiers
Instructions
Step 1: Analyze Current Usage
import { Lindy } from '@lindy-ai/sdk';
async function analyzeUsage() {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
const usage = await lindy.usage.monthly({
startDate: '2025-01-01',
endDate: '2025-01-31',
});
const analysis = {
totalRuns: usage.agentRuns.total,
totalCost: usage.billing.total,
costPerRun: usage.billing.total / usage.agentRuns.total,
topAgents: usage.byAgent
.sort((a: any, b: any) => b.cost - a.cost)
.slice(0, 5),
peakHours: usage.byHour
.sort((a: any, b: any) => b.runs - a.runs)
.slice(0, 5),
};
console.log('Usage Analysis:', analysis);
return analysis;
}
Step 2: Implement Usage Budgets
interface Budget {
monthly: number;
daily: number;
perAgent: number;
}
const budget: Budget = {
monthly: 500, // $500/month
daily: 20, // $20/day
perAgent: 50, // $50/agent/month
};
async function checkBudget(): Promise<boolean> {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
const usage = await lindy.usage.current();
if (usage.billing.monthly >= budget.monthly) {
console.error('Monthly budget exceeded!');
await sendAlert('Budget exceeded', { usage, budget });
return false;
}
if (usage.billing.today >= budget.daily) {
console.warn('Daily budget exceeded');
return false;
}
return true;
}
Step 3: Optimize Agent Costs
// Cost-optimized agent configuration
const optimizedAgent = {
name: 'Cost-Efficient Agent',
instructions: 'Be brief. Answer in 1-2 sentences.',
config: {
model: 'gpt-3.5-turbo', // Cheaper model
maxTokens: 100, // Limit output
temperature: 0.3, // Less creative = fewer tokens
},
};
// Route simple queries to cheaper agents
async function routeQuery(input: string) {
const isSimple = input.length < 100 && !input.includes('analyze');
const agentId = isSimple
? 'agt_cheap_simple'
: 'agt_expensive_complex';
return lindy.agents.run(agentId, { input });
}
Step 4: Implement Caching to Reduce Calls
import NodeCache from 'node-cache';
const cache = new NodeCache({ stdTTL: 3600 }); // 1 hour cache
async function cachedRun(agentId: string, input: string) {
const cacheKey = `${agentId}:${input}`;
// Check cache first (free!)
const cached = cache.get(cacheKey);
if (cached) {
console.log('Cache hit - $0');
return cached;
}
// Only call API if cache miss
const result = await lindy.agents.run(agentId, { input });
cache.set(cacheKey, result);
console.log('Cache miss - API call made');
return result;
}
Step 5: Set Up Cost Alerts
async function setupCostAlerts() {
const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
// Alert at 80% of budget
await lindy.billing.alerts.create({
threshold: 400, // $400 of $500 budget
type: 'monthly',
channels: ['email', 'slack'],
message: 'Approaching monthly budget limit',
});
// Daily anomaly detection
await lindy.billing.alerts.create({
threshold: 50, // 50% above average
type: 'anomaly',
channels: ['slack'],
message: 'Unusual spending detected',
});
}
Cost Optimization Checklist
[ ] Usage analysis completed
[ ] Budget limits defined
[ ] Cost alerts configured
[ ] Caching implemented
[ ] Cheaper models for simple tasks
[ ] Max tokens configured
[ ] Unused agents identified and disabled
[ ] Peak usage patterns analyzed
Output
- Usage analysis report
- Budget enforcement
- Cost-optimized agents
- Caching for reduced API calls
- Alert system
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Budget exceeded | High usage | Throttle or pause |
| Cost spike | Anomaly | Investigate and alert |
| Cache ineffective | Low hit rate | Tune TTL |
Examples
Monthly Cost Report
async function generateCostReport() {
const usage = await analyzeUsage();
const report = `
# Lindy Cost Report - ${new Date().toISOString().slice(0, 7)}
## Summary
- Total Runs: ${usage.totalRuns}
- Total Cost: $${usage.totalCost.toFixed(2)}
- Cost per Run: $${usage.costPerRun.toFixed(4)}
## Top Agents by Cost
${usage.topAgents.map((a: any) => `- ${a.name}: $${a.cost.toFixed(2)}`).join('\n')}
## Recommendations
${usage.costPerRun > 0.05 ? '- Consider cheaper models for simple tasks' : ''}
${usage.cacheHitRate < 0.3 ? '- Improve caching strategy' : ''}
`;
return report;
}
Resources
Next Steps
Proceed to lindy-reference-architecture for architecture patterns.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
