jeremylongshore

lindy-core-workflow-a

@jeremylongshore/lindy-core-workflow-a
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Core Lindy workflow for creating and configuring AI agents. Use when building new agents, defining agent behaviors, or setting up agent capabilities. Trigger with phrases like "create lindy agent", "build lindy agent", "lindy agent workflow", "configure lindy agent".

Installation

$skills install @jeremylongshore/lindy-core-workflow-a
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/lindy-pack/skills/lindy-core-workflow-a/SKILL.md
Branchmain
Scoped Name@jeremylongshore/lindy-core-workflow-a

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: lindy-core-workflow-a description: | Core Lindy workflow for creating and configuring AI agents. Use when building new agents, defining agent behaviors, or setting up agent capabilities. Trigger with phrases like "create lindy agent", "build lindy agent", "lindy agent workflow", "configure lindy agent". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Lindy Core Workflow A: Agent Creation

Overview

Complete workflow for creating, configuring, and deploying Lindy AI agents.

Prerequisites

  • Completed lindy-install-auth setup
  • Understanding of agent use case
  • Clear instructions/persona defined

Instructions

Step 1: Define Agent Specification

interface AgentSpec {
  name: string;
  description: string;
  instructions: string;
  tools: string[];
  model?: string;
  temperature?: number;
}

const agentSpec: AgentSpec = {
  name: 'Customer Support Agent',
  description: 'Handles customer inquiries and support tickets',
  instructions: `
    You are a helpful customer support agent.
    - Be polite and professional
    - Ask clarifying questions when needed
    - Escalate complex issues to human support
    - Always confirm resolution with the customer
  `,
  tools: ['email', 'calendar', 'knowledge-base'],
  model: 'gpt-4',
  temperature: 0.7,
};

Step 2: Create the Agent

import { Lindy } from '@lindy-ai/sdk';

const lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });

async function createAgent(spec: AgentSpec) {
  const agent = await lindy.agents.create({
    name: spec.name,
    description: spec.description,
    instructions: spec.instructions,
    tools: spec.tools,
    config: {
      model: spec.model || 'gpt-4',
      temperature: spec.temperature || 0.7,
    },
  });

  console.log(`Created agent: ${agent.id}`);
  return agent;
}

Step 3: Configure Agent Tools

async function configureTools(agentId: string, tools: string[]) {
  for (const tool of tools) {
    await lindy.agents.addTool(agentId, {
      name: tool,
      enabled: true,
    });
  }
  console.log(`Configured ${tools.length} tools`);
}

Step 4: Test the Agent

async function testAgent(agentId: string) {
  const testCases = [
    'Hello, I need help with my order',
    'Can you check my subscription status?',
    'I want to cancel my account',
  ];

  for (const input of testCases) {
    const result = await lindy.agents.run(agentId, { input });
    console.log(`Input: ${input}`);
    console.log(`Output: ${result.output}\n`);
  }
}

Output

  • Fully configured AI agent
  • Connected tools and integrations
  • Tested agent responses
  • Ready for deployment

Error Handling

ErrorCauseSolution
Tool not foundInvalid tool nameCheck available tools list
Instructions too longExceeds limitSummarize or split instructions
Model unavailableUnsupported modelUse default gpt-4

Examples

Complete Agent Creation Flow

async function main() {
  // Create agent
  const agent = await createAgent(agentSpec);

  // Configure tools
  await configureTools(agent.id, agentSpec.tools);

  // Test agent
  await testAgent(agent.id);

  console.log(`Agent ${agent.id} is ready!`);
}

main().catch(console.error);

Resources

Next Steps

Proceed to lindy-core-workflow-b for task automation workflows.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.