Set up comprehensive observability for LangChain integrations. Use when implementing monitoring, setting up dashboards, or configuring alerting for LangChain application health. Trigger with phrases like "langchain monitoring", "langchain metrics", "langchain observability", "langchain tracing", "langchain alerts".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: langchain-observability description: | Set up comprehensive observability for LangChain integrations. Use when implementing monitoring, setting up dashboards, or configuring alerting for LangChain application health. Trigger with phrases like "langchain monitoring", "langchain metrics", "langchain observability", "langchain tracing", "langchain alerts". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
LangChain Observability
Overview
Set up comprehensive observability for LangChain applications with LangSmith, OpenTelemetry, and Prometheus.
Prerequisites
- LangChain application in staging/production
- LangSmith account (optional but recommended)
- Prometheus/Grafana infrastructure
- OpenTelemetry collector (optional)
Instructions
Step 1: Enable LangSmith Tracing
import os
# Configure LangSmith
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-langsmith-api-key"
os.environ["LANGCHAIN_PROJECT"] = "my-production-app"
# Optional: Set endpoint for self-hosted
# os.environ["LANGCHAIN_ENDPOINT"] = "https://langsmith.example.com"
from langchain_openai import ChatOpenAI
# All chains are automatically traced
llm = ChatOpenAI(model="gpt-4o-mini")
response = llm.invoke("Hello!") # Traced in LangSmith
Step 2: Prometheus Metrics
from prometheus_client import Counter, Histogram, Gauge, start_http_server
from langchain_core.callbacks import BaseCallbackHandler
import time
# Define metrics
LLM_REQUESTS = Counter(
"langchain_llm_requests_total",
"Total LLM requests",
["model", "status"]
)
LLM_LATENCY = Histogram(
"langchain_llm_latency_seconds",
"LLM request latency",
["model"],
buckets=[0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0]
)
LLM_TOKENS = Counter(
"langchain_llm_tokens_total",
"Total tokens processed",
["model", "type"] # type: input or output
)
ACTIVE_REQUESTS = Gauge(
"langchain_active_requests",
"Currently active LLM requests"
)
class PrometheusCallback(BaseCallbackHandler):
"""Export metrics to Prometheus."""
def __init__(self):
self.start_times = {}
def on_llm_start(self, serialized, prompts, run_id, **kwargs) -> None:
ACTIVE_REQUESTS.inc()
self.start_times[str(run_id)] = time.time()
def on_llm_end(self, response, run_id, **kwargs) -> None:
ACTIVE_REQUESTS.dec()
model = response.llm_output.get("model_name", "unknown") if response.llm_output else "unknown"
# Record latency
if str(run_id) in self.start_times:
latency = time.time() - self.start_times.pop(str(run_id))
LLM_LATENCY.labels(model=model).observe(latency)
# Record success
LLM_REQUESTS.labels(model=model, status="success").inc()
# Record tokens
if response.llm_output and "token_usage" in response.llm_output:
usage = response.llm_output["token_usage"]
LLM_TOKENS.labels(model=model, type="input").inc(usage.get("prompt_tokens", 0))
LLM_TOKENS.labels(model=model, type="output").inc(usage.get("completion_tokens", 0))
def on_llm_error(self, error, run_id, **kwargs) -> None:
ACTIVE_REQUESTS.dec()
LLM_REQUESTS.labels(model="unknown", status="error").inc()
# Start Prometheus HTTP server
start_http_server(9090) # Metrics at http://localhost:9090/metrics
Step 3: OpenTelemetry Integration
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.instrumentation.httpx import HTTPXClientInstrumentor
# Configure OpenTelemetry
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="http://localhost:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# Instrument HTTP client (used by LangChain)
HTTPXClientInstrumentor().instrument()
tracer = trace.get_tracer(__name__)
class OpenTelemetryCallback(BaseCallbackHandler):
"""Add OpenTelemetry spans for LangChain operations."""
def __init__(self):
self.spans = {}
def on_chain_start(self, serialized, inputs, run_id, **kwargs) -> None:
span = tracer.start_span(
name=f"chain.{serialized.get('name', 'unknown')}",
attributes={
"langchain.chain_type": serialized.get("id", ["unknown"])[-1],
"langchain.run_id": str(run_id),
}
)
self.spans[str(run_id)] = span
def on_chain_end(self, outputs, run_id, **kwargs) -> None:
if str(run_id) in self.spans:
span = self.spans.pop(str(run_id))
span.set_attribute("langchain.output_keys", list(outputs.keys()))
span.end()
def on_llm_start(self, serialized, prompts, run_id, parent_run_id, **kwargs) -> None:
parent_span = self.spans.get(str(parent_run_id))
context = trace.set_span_in_context(parent_span) if parent_span else None
span = tracer.start_span(
name=f"llm.{serialized.get('name', 'unknown')}",
context=context,
attributes={
"langchain.llm_type": serialized.get("id", ["unknown"])[-1],
"langchain.prompt_count": len(prompts),
}
)
self.spans[str(run_id)] = span
def on_llm_end(self, response, run_id, **kwargs) -> None:
if str(run_id) in self.spans:
span = self.spans.pop(str(run_id))
if response.llm_output and "token_usage" in response.llm_output:
usage = response.llm_output["token_usage"]
span.set_attribute("langchain.prompt_tokens", usage.get("prompt_tokens", 0))
span.set_attribute("langchain.completion_tokens", usage.get("completion_tokens", 0))
span.end()
Step 4: Structured Logging
import structlog
from datetime import datetime
# Configure structlog
structlog.configure(
processors=[
structlog.stdlib.filter_by_level,
structlog.stdlib.add_logger_name,
structlog.stdlib.add_log_level,
structlog.processors.TimeStamper(fmt="iso"),
structlog.processors.JSONRenderer()
],
logger_factory=structlog.stdlib.LoggerFactory(),
)
logger = structlog.get_logger()
class StructuredLoggingCallback(BaseCallbackHandler):
"""Emit structured logs for LangChain operations."""
def on_llm_start(self, serialized, prompts, run_id, **kwargs) -> None:
logger.info(
"llm_start",
run_id=str(run_id),
model=serialized.get("name"),
prompt_count=len(prompts)
)
def on_llm_end(self, response, run_id, **kwargs) -> None:
token_usage = {}
if response.llm_output and "token_usage" in response.llm_output:
token_usage = response.llm_output["token_usage"]
logger.info(
"llm_end",
run_id=str(run_id),
generations=len(response.generations),
**token_usage
)
def on_llm_error(self, error, run_id, **kwargs) -> None:
logger.error(
"llm_error",
run_id=str(run_id),
error_type=type(error).__name__,
error_message=str(error)
)
Step 5: Grafana Dashboard
{
"title": "LangChain Observability",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(langchain_llm_requests_total[5m])",
"legendFormat": "{{model}} - {{status}}"
}
]
},
{
"title": "Latency P95",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(langchain_llm_latency_seconds_bucket[5m]))",
"legendFormat": "{{model}}"
}
]
},
{
"title": "Token Usage",
"type": "graph",
"targets": [
{
"expr": "rate(langchain_llm_tokens_total[5m])",
"legendFormat": "{{model}} - {{type}}"
}
]
},
{
"title": "Error Rate",
"type": "singlestat",
"targets": [
{
"expr": "sum(rate(langchain_llm_requests_total{status='error'}[5m])) / sum(rate(langchain_llm_requests_total[5m]))"
}
]
}
]
}
Step 6: Alerting Rules
# prometheus/alerts.yml
groups:
- name: langchain
rules:
- alert: HighErrorRate
expr: |
sum(rate(langchain_llm_requests_total{status="error"}[5m]))
/ sum(rate(langchain_llm_requests_total[5m])) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: "High LLM error rate"
description: "Error rate is {{ $value | humanizePercentage }}"
- alert: HighLatency
expr: |
histogram_quantile(0.95, rate(langchain_llm_latency_seconds_bucket[5m])) > 5
for: 5m
labels:
severity: warning
annotations:
summary: "High LLM latency"
description: "P95 latency is {{ $value }}s"
- alert: TokenBudgetExceeded
expr: |
sum(increase(langchain_llm_tokens_total[1h])) > 1000000
labels:
severity: warning
annotations:
summary: "High token usage"
description: "Used {{ $value }} tokens in the last hour"
Output
- LangSmith tracing enabled
- Prometheus metrics exported
- OpenTelemetry spans
- Structured logging
- Grafana dashboard and alerts
Resources
Next Steps
Use langchain-incident-runbook for incident response procedures.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
