jeremylongshore

langchain-observability

@jeremylongshore/langchain-observability
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Set up comprehensive observability for LangChain integrations. Use when implementing monitoring, setting up dashboards, or configuring alerting for LangChain application health. Trigger with phrases like "langchain monitoring", "langchain metrics", "langchain observability", "langchain tracing", "langchain alerts".

Installation

$skills install @jeremylongshore/langchain-observability
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/langchain-pack/skills/langchain-observability/SKILL.md
Branchmain
Scoped Name@jeremylongshore/langchain-observability

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: langchain-observability description: | Set up comprehensive observability for LangChain integrations. Use when implementing monitoring, setting up dashboards, or configuring alerting for LangChain application health. Trigger with phrases like "langchain monitoring", "langchain metrics", "langchain observability", "langchain tracing", "langchain alerts". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

LangChain Observability

Overview

Set up comprehensive observability for LangChain applications with LangSmith, OpenTelemetry, and Prometheus.

Prerequisites

  • LangChain application in staging/production
  • LangSmith account (optional but recommended)
  • Prometheus/Grafana infrastructure
  • OpenTelemetry collector (optional)

Instructions

Step 1: Enable LangSmith Tracing

import os

# Configure LangSmith
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-langsmith-api-key"
os.environ["LANGCHAIN_PROJECT"] = "my-production-app"

# Optional: Set endpoint for self-hosted
# os.environ["LANGCHAIN_ENDPOINT"] = "https://langsmith.example.com"

from langchain_openai import ChatOpenAI

# All chains are automatically traced
llm = ChatOpenAI(model="gpt-4o-mini")
response = llm.invoke("Hello!")  # Traced in LangSmith

Step 2: Prometheus Metrics

from prometheus_client import Counter, Histogram, Gauge, start_http_server
from langchain_core.callbacks import BaseCallbackHandler
import time

# Define metrics
LLM_REQUESTS = Counter(
    "langchain_llm_requests_total",
    "Total LLM requests",
    ["model", "status"]
)

LLM_LATENCY = Histogram(
    "langchain_llm_latency_seconds",
    "LLM request latency",
    ["model"],
    buckets=[0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0]
)

LLM_TOKENS = Counter(
    "langchain_llm_tokens_total",
    "Total tokens processed",
    ["model", "type"]  # type: input or output
)

ACTIVE_REQUESTS = Gauge(
    "langchain_active_requests",
    "Currently active LLM requests"
)

class PrometheusCallback(BaseCallbackHandler):
    """Export metrics to Prometheus."""

    def __init__(self):
        self.start_times = {}

    def on_llm_start(self, serialized, prompts, run_id, **kwargs) -> None:
        ACTIVE_REQUESTS.inc()
        self.start_times[str(run_id)] = time.time()

    def on_llm_end(self, response, run_id, **kwargs) -> None:
        ACTIVE_REQUESTS.dec()
        model = response.llm_output.get("model_name", "unknown") if response.llm_output else "unknown"

        # Record latency
        if str(run_id) in self.start_times:
            latency = time.time() - self.start_times.pop(str(run_id))
            LLM_LATENCY.labels(model=model).observe(latency)

        # Record success
        LLM_REQUESTS.labels(model=model, status="success").inc()

        # Record tokens
        if response.llm_output and "token_usage" in response.llm_output:
            usage = response.llm_output["token_usage"]
            LLM_TOKENS.labels(model=model, type="input").inc(usage.get("prompt_tokens", 0))
            LLM_TOKENS.labels(model=model, type="output").inc(usage.get("completion_tokens", 0))

    def on_llm_error(self, error, run_id, **kwargs) -> None:
        ACTIVE_REQUESTS.dec()
        LLM_REQUESTS.labels(model="unknown", status="error").inc()

# Start Prometheus HTTP server
start_http_server(9090)  # Metrics at http://localhost:9090/metrics

Step 3: OpenTelemetry Integration

from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.instrumentation.httpx import HTTPXClientInstrumentor

# Configure OpenTelemetry
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="http://localhost:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)

# Instrument HTTP client (used by LangChain)
HTTPXClientInstrumentor().instrument()

tracer = trace.get_tracer(__name__)

class OpenTelemetryCallback(BaseCallbackHandler):
    """Add OpenTelemetry spans for LangChain operations."""

    def __init__(self):
        self.spans = {}

    def on_chain_start(self, serialized, inputs, run_id, **kwargs) -> None:
        span = tracer.start_span(
            name=f"chain.{serialized.get('name', 'unknown')}",
            attributes={
                "langchain.chain_type": serialized.get("id", ["unknown"])[-1],
                "langchain.run_id": str(run_id),
            }
        )
        self.spans[str(run_id)] = span

    def on_chain_end(self, outputs, run_id, **kwargs) -> None:
        if str(run_id) in self.spans:
            span = self.spans.pop(str(run_id))
            span.set_attribute("langchain.output_keys", list(outputs.keys()))
            span.end()

    def on_llm_start(self, serialized, prompts, run_id, parent_run_id, **kwargs) -> None:
        parent_span = self.spans.get(str(parent_run_id))
        context = trace.set_span_in_context(parent_span) if parent_span else None

        span = tracer.start_span(
            name=f"llm.{serialized.get('name', 'unknown')}",
            context=context,
            attributes={
                "langchain.llm_type": serialized.get("id", ["unknown"])[-1],
                "langchain.prompt_count": len(prompts),
            }
        )
        self.spans[str(run_id)] = span

    def on_llm_end(self, response, run_id, **kwargs) -> None:
        if str(run_id) in self.spans:
            span = self.spans.pop(str(run_id))
            if response.llm_output and "token_usage" in response.llm_output:
                usage = response.llm_output["token_usage"]
                span.set_attribute("langchain.prompt_tokens", usage.get("prompt_tokens", 0))
                span.set_attribute("langchain.completion_tokens", usage.get("completion_tokens", 0))
            span.end()

Step 4: Structured Logging

import structlog
from datetime import datetime

# Configure structlog
structlog.configure(
    processors=[
        structlog.stdlib.filter_by_level,
        structlog.stdlib.add_logger_name,
        structlog.stdlib.add_log_level,
        structlog.processors.TimeStamper(fmt="iso"),
        structlog.processors.JSONRenderer()
    ],
    logger_factory=structlog.stdlib.LoggerFactory(),
)

logger = structlog.get_logger()

class StructuredLoggingCallback(BaseCallbackHandler):
    """Emit structured logs for LangChain operations."""

    def on_llm_start(self, serialized, prompts, run_id, **kwargs) -> None:
        logger.info(
            "llm_start",
            run_id=str(run_id),
            model=serialized.get("name"),
            prompt_count=len(prompts)
        )

    def on_llm_end(self, response, run_id, **kwargs) -> None:
        token_usage = {}
        if response.llm_output and "token_usage" in response.llm_output:
            token_usage = response.llm_output["token_usage"]

        logger.info(
            "llm_end",
            run_id=str(run_id),
            generations=len(response.generations),
            **token_usage
        )

    def on_llm_error(self, error, run_id, **kwargs) -> None:
        logger.error(
            "llm_error",
            run_id=str(run_id),
            error_type=type(error).__name__,
            error_message=str(error)
        )

Step 5: Grafana Dashboard

{
  "title": "LangChain Observability",
  "panels": [
    {
      "title": "Request Rate",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(langchain_llm_requests_total[5m])",
          "legendFormat": "{{model}} - {{status}}"
        }
      ]
    },
    {
      "title": "Latency P95",
      "type": "graph",
      "targets": [
        {
          "expr": "histogram_quantile(0.95, rate(langchain_llm_latency_seconds_bucket[5m]))",
          "legendFormat": "{{model}}"
        }
      ]
    },
    {
      "title": "Token Usage",
      "type": "graph",
      "targets": [
        {
          "expr": "rate(langchain_llm_tokens_total[5m])",
          "legendFormat": "{{model}} - {{type}}"
        }
      ]
    },
    {
      "title": "Error Rate",
      "type": "singlestat",
      "targets": [
        {
          "expr": "sum(rate(langchain_llm_requests_total{status='error'}[5m])) / sum(rate(langchain_llm_requests_total[5m]))"
        }
      ]
    }
  ]
}

Step 6: Alerting Rules

# prometheus/alerts.yml
groups:
  - name: langchain
    rules:
      - alert: HighErrorRate
        expr: |
          sum(rate(langchain_llm_requests_total{status="error"}[5m]))
          / sum(rate(langchain_llm_requests_total[5m])) > 0.05
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High LLM error rate"
          description: "Error rate is {{ $value | humanizePercentage }}"

      - alert: HighLatency
        expr: |
          histogram_quantile(0.95, rate(langchain_llm_latency_seconds_bucket[5m])) > 5
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High LLM latency"
          description: "P95 latency is {{ $value }}s"

      - alert: TokenBudgetExceeded
        expr: |
          sum(increase(langchain_llm_tokens_total[1h])) > 1000000
        labels:
          severity: warning
        annotations:
          summary: "High token usage"
          description: "Used {{ $value }} tokens in the last hour"

Output

  • LangSmith tracing enabled
  • Prometheus metrics exported
  • OpenTelemetry spans
  • Structured logging
  • Grafana dashboard and alerts

Resources

Next Steps

Use langchain-incident-runbook for incident response procedures.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.