Configure LangChain multi-environment setup for dev/staging/prod. Use when managing multiple environments, configuring environment-specific settings, or implementing environment promotion workflows. Trigger with phrases like "langchain environments", "langchain staging", "langchain dev prod", "environment configuration", "langchain env setup".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: langchain-multi-env-setup description: | Configure LangChain multi-environment setup for dev/staging/prod. Use when managing multiple environments, configuring environment-specific settings, or implementing environment promotion workflows. Trigger with phrases like "langchain environments", "langchain staging", "langchain dev prod", "environment configuration", "langchain env setup". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
LangChain Multi-Environment Setup
Overview
Configure and manage LangChain applications across development, staging, and production environments.
Prerequisites
- LangChain application ready for deployment
- Access to multiple deployment environments
- Secrets management solution (e.g., GCP Secret Manager)
Instructions
Step 1: Environment Configuration Structure
config/
├── base.yaml # Shared configuration
├── development.yaml # Development overrides
├── staging.yaml # Staging overrides
├── production.yaml # Production overrides
└── settings.py # Configuration loader
Step 2: Create Base Configuration
# config/base.yaml
app:
name: langchain-app
version: "1.0.0"
llm:
max_retries: 3
request_timeout: 30
logging:
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
date_format: "%Y-%m-%d %H:%M:%S"
cache:
enabled: true
ttl_seconds: 3600
Step 3: Environment-Specific Overrides
# config/development.yaml
extends: base
app:
debug: true
llm:
provider: openai
model: gpt-4o-mini
temperature: 0.7
# Use lower tier in dev
logging:
level: DEBUG
cache:
type: memory
# In-memory cache for local dev
langsmith:
tracing: true
project: langchain-dev
# config/staging.yaml
extends: base
app:
debug: false
llm:
provider: openai
model: gpt-4o-mini
temperature: 0.5
logging:
level: INFO
cache:
type: redis
url: ${REDIS_URL} # From environment
langsmith:
tracing: true
project: langchain-staging
# config/production.yaml
extends: base
app:
debug: false
llm:
provider: openai
model: gpt-4o
temperature: 0.3
max_retries: 5
request_timeout: 60
logging:
level: WARNING
cache:
type: redis
url: ${REDIS_URL}
langsmith:
tracing: true
project: langchain-production
monitoring:
prometheus: true
sentry: true
Step 4: Configuration Loader
# config/settings.py
import os
from pathlib import Path
from typing import Any, Dict, Optional
import yaml
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings
class LLMConfig(BaseModel):
provider: str = "openai"
model: str = "gpt-4o-mini"
temperature: float = 0.7
max_retries: int = 3
request_timeout: int = 30
class CacheConfig(BaseModel):
enabled: bool = True
type: str = "memory"
url: Optional[str] = None
ttl_seconds: int = 3600
class LangSmithConfig(BaseModel):
tracing: bool = False
project: str = "default"
class Settings(BaseSettings):
environment: str = Field(default="development", env="ENVIRONMENT")
llm: LLMConfig = Field(default_factory=LLMConfig)
cache: CacheConfig = Field(default_factory=CacheConfig)
langsmith: LangSmithConfig = Field(default_factory=LangSmithConfig)
class Config:
env_file = ".env"
def load_config(environment: str = None) -> Settings:
"""Load configuration for specified environment."""
env = environment or os.environ.get("ENVIRONMENT", "development")
config_dir = Path(__file__).parent
# Load base config
config = {}
base_path = config_dir / "base.yaml"
if base_path.exists():
with open(base_path) as f:
config = yaml.safe_load(f) or {}
# Load environment-specific overrides
env_path = config_dir / f"{env}.yaml"
if env_path.exists():
with open(env_path) as f:
env_config = yaml.safe_load(f) or {}
config = deep_merge(config, env_config)
# Resolve environment variables
config = resolve_env_vars(config)
return Settings(**config)
def deep_merge(base: Dict, override: Dict) -> Dict:
"""Deep merge two dictionaries."""
result = base.copy()
for key, value in override.items():
if key in result and isinstance(result[key], dict) and isinstance(value, dict):
result[key] = deep_merge(result[key], value)
else:
result[key] = value
return result
def resolve_env_vars(config: Any) -> Any:
"""Resolve ${VAR} patterns in config values."""
if isinstance(config, dict):
return {k: resolve_env_vars(v) for k, v in config.items()}
elif isinstance(config, list):
return [resolve_env_vars(v) for v in config]
elif isinstance(config, str) and config.startswith("${") and config.endswith("}"):
var_name = config[2:-1]
return os.environ.get(var_name, "")
return config
# Global settings instance
settings = load_config()
Step 5: Environment-Aware LLM Factory
# infrastructure/llm_factory.py
from config.settings import settings
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.language_models import BaseChatModel
def create_llm() -> BaseChatModel:
"""Create LLM based on environment configuration."""
llm_config = settings.llm
if llm_config.provider == "openai":
return ChatOpenAI(
model=llm_config.model,
temperature=llm_config.temperature,
max_retries=llm_config.max_retries,
request_timeout=llm_config.request_timeout,
)
elif llm_config.provider == "anthropic":
return ChatAnthropic(
model=llm_config.model,
temperature=llm_config.temperature,
max_retries=llm_config.max_retries,
)
else:
raise ValueError(f"Unknown provider: {llm_config.provider}")
Step 6: Environment-Specific Secrets
# infrastructure/secrets.py
import os
from google.cloud import secretmanager
def get_secret(secret_id: str) -> str:
"""Get secret from appropriate source based on environment."""
env = os.environ.get("ENVIRONMENT", "development")
if env == "development":
# Use local .env file in development
return os.environ.get(secret_id, "")
else:
# Use Secret Manager in staging/production
client = secretmanager.SecretManagerServiceClient()
project_id = os.environ.get("GCP_PROJECT")
name = f"projects/{project_id}/secrets/{secret_id}/versions/latest"
response = client.access_secret_version(request={"name": name})
return response.payload.data.decode("UTF-8")
# Usage
openai_key = get_secret("OPENAI_API_KEY")
Step 7: Docker Compose for Local Environments
# docker-compose.yml
version: '3.8'
services:
app:
build: .
environment:
- ENVIRONMENT=development
- OPENAI_API_KEY=${OPENAI_API_KEY}
ports:
- "8080:8080"
volumes:
- ./src:/app/src
depends_on:
- redis
redis:
image: redis:7-alpine
ports:
- "6379:6379"
# Local development tools
langsmith-proxy:
image: langchain/langsmith-proxy:latest
environment:
- LANGCHAIN_API_KEY=${LANGCHAIN_API_KEY}
Output
- Multi-environment configuration structure
- Environment-aware configuration loader
- Secrets management per environment
- Docker Compose for local development
Examples
Running Different Environments
# Development
ENVIRONMENT=development python main.py
# Staging
ENVIRONMENT=staging python main.py
# Production
ENVIRONMENT=production python main.py
Environment Promotion Workflow
# 1. Test in development
ENVIRONMENT=development pytest tests/
# 2. Deploy to staging
gcloud run deploy langchain-api-staging \
--set-env-vars="ENVIRONMENT=staging"
# 3. Run integration tests
ENVIRONMENT=staging pytest tests/integration/
# 4. Deploy to production
gcloud run deploy langchain-api \
--set-env-vars="ENVIRONMENT=production"
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Config Not Found | Missing YAML file | Ensure environment file exists |
| Secret Missing | Not in Secret Manager | Add secret for environment |
| Env Var Not Set | Missing .env | Create .env from .env.example |
Resources
Next Steps
Use langchain-observability for environment-specific monitoring.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
