jeremylongshore

langchain-data-handling

@jeremylongshore/langchain-data-handling
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement LangChain data privacy and handling best practices. Use when handling sensitive data, implementing PII protection, or ensuring data compliance in LLM applications. Trigger with phrases like "langchain data privacy", "langchain PII", "langchain GDPR", "langchain data handling", "langchain compliance".

Installation

$skills install @jeremylongshore/langchain-data-handling
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/langchain-pack/skills/langchain-data-handling/SKILL.md
Branchmain
Scoped Name@jeremylongshore/langchain-data-handling

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: langchain-data-handling description: | Implement LangChain data privacy and handling best practices. Use when handling sensitive data, implementing PII protection, or ensuring data compliance in LLM applications. Trigger with phrases like "langchain data privacy", "langchain PII", "langchain GDPR", "langchain data handling", "langchain compliance". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

LangChain Data Handling

Overview

Best practices for handling sensitive data, PII protection, and compliance in LangChain applications.

Prerequisites

  • Understanding of data privacy regulations (GDPR, CCPA)
  • LangChain application processing user data
  • Data classification framework

Instructions

Step 1: PII Detection and Masking

import re
from typing import List, Tuple
from dataclasses import dataclass

@dataclass
class PIIPattern:
    name: str
    pattern: str
    replacement: str

PII_PATTERNS = [
    PIIPattern("email", r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b", "[EMAIL]"),
    PIIPattern("phone", r"\b\d{3}[-.]?\d{3}[-.]?\d{4}\b", "[PHONE]"),
    PIIPattern("ssn", r"\b\d{3}-\d{2}-\d{4}\b", "[SSN]"),
    PIIPattern("credit_card", r"\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b", "[CREDIT_CARD]"),
    PIIPattern("ip_address", r"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b", "[IP_ADDRESS]"),
    PIIPattern("date_of_birth", r"\b\d{1,2}/\d{1,2}/\d{2,4}\b", "[DOB]"),
]

class PIIDetector:
    """Detect and mask PII in text."""

    def __init__(self, patterns: List[PIIPattern] = None):
        self.patterns = patterns or PII_PATTERNS

    def detect(self, text: str) -> List[Tuple[str, str, int, int]]:
        """Detect PII in text. Returns list of (type, value, start, end)."""
        findings = []
        for pattern in self.patterns:
            for match in re.finditer(pattern.pattern, text, re.IGNORECASE):
                findings.append((
                    pattern.name,
                    match.group(),
                    match.start(),
                    match.end()
                ))
        return findings

    def mask(self, text: str) -> str:
        """Mask all PII in text."""
        masked = text
        for pattern in self.patterns:
            masked = re.sub(pattern.pattern, pattern.replacement, masked, flags=re.IGNORECASE)
        return masked

    def redact(self, text: str) -> Tuple[str, dict]:
        """Redact PII and return mapping for restoration."""
        redactions = {}
        counter = {}

        def replace(match, pattern_name, replacement):
            count = counter.get(pattern_name, 0)
            counter[pattern_name] = count + 1
            key = f"{replacement[1:-1]}_{count}"
            redactions[key] = match.group()
            return f"[{key}]"

        result = text
        for pattern in self.patterns:
            result = re.sub(
                pattern.pattern,
                lambda m, p=pattern: replace(m, p.name, p.replacement),
                result,
                flags=re.IGNORECASE
            )

        return result, redactions

# Usage
detector = PIIDetector()
text = "Contact john@example.com or call 555-123-4567"
masked = detector.mask(text)
# "Contact [EMAIL] or call [PHONE]"

Step 2: Pre-processing Pipeline

from langchain_core.runnables import RunnableLambda, RunnablePassthrough

def create_privacy_pipeline(chain):
    """Wrap chain with PII protection."""
    detector = PIIDetector()

    def preprocess(input_data: dict) -> dict:
        """Mask PII before sending to LLM."""
        if "input" in input_data:
            masked, redactions = detector.redact(input_data["input"])
            return {
                **input_data,
                "input": masked,
                "_redactions": redactions
            }
        return input_data

    def postprocess(output: str, redactions: dict = None) -> str:
        """Restore redacted values in output if needed."""
        # Note: Generally we DON'T restore PII in outputs
        # This is just for cases where it's required
        return output

    privacy_chain = (
        RunnableLambda(preprocess)
        | chain
    )

    return privacy_chain

# Usage
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Summarize: {input}")
chain = prompt | llm

safe_chain = create_privacy_pipeline(chain)
result = safe_chain.invoke({"input": "User john@example.com reported an issue"})
# LLM sees: "User [EMAIL_0] reported an issue"

Step 3: Data Retention Policies

from datetime import datetime, timedelta
from typing import Optional
import hashlib

class DataRetentionManager:
    """Manage data retention for LLM interactions."""

    def __init__(self, retention_days: int = 30):
        self.retention_days = retention_days
        self.storage = {}  # Replace with actual storage

    def store_interaction(
        self,
        user_id: str,
        input_text: str,
        output_text: str,
        metadata: dict = None
    ) -> str:
        """Store interaction with retention policy."""
        interaction_id = hashlib.sha256(
            f"{user_id}{datetime.now().isoformat()}{input_text}".encode()
        ).hexdigest()[:16]

        # Mask PII before storage
        detector = PIIDetector()

        self.storage[interaction_id] = {
            "user_id_hash": hashlib.sha256(user_id.encode()).hexdigest(),
            "input_masked": detector.mask(input_text),
            "output_masked": detector.mask(output_text),
            "created_at": datetime.now().isoformat(),
            "expires_at": (datetime.now() + timedelta(days=self.retention_days)).isoformat(),
            "metadata": metadata or {}
        }

        return interaction_id

    def cleanup_expired(self) -> int:
        """Remove expired interactions."""
        now = datetime.now()
        expired = [
            k for k, v in self.storage.items()
            if datetime.fromisoformat(v["expires_at"]) < now
        ]

        for key in expired:
            del self.storage[key]

        return len(expired)

    def delete_user_data(self, user_id: str) -> int:
        """GDPR right to erasure - delete all user data."""
        user_hash = hashlib.sha256(user_id.encode()).hexdigest()
        to_delete = [
            k for k, v in self.storage.items()
            if v["user_id_hash"] == user_hash
        ]

        for key in to_delete:
            del self.storage[key]

        return len(to_delete)

Step 4: Consent Management

from enum import Enum
from pydantic import BaseModel
from datetime import datetime

class ConsentType(str, Enum):
    LLM_PROCESSING = "llm_processing"
    DATA_RETENTION = "data_retention"
    ANALYTICS = "analytics"
    TRAINING = "training"  # For fine-tuning

class UserConsent(BaseModel):
    user_id: str
    consents: dict[ConsentType, bool]
    updated_at: datetime
    ip_address: str = None

class ConsentManager:
    """Manage user consent for data processing."""

    def __init__(self):
        self.consents = {}

    def set_consent(self, user_consent: UserConsent) -> None:
        self.consents[user_consent.user_id] = user_consent

    def check_consent(self, user_id: str, consent_type: ConsentType) -> bool:
        """Check if user has given consent."""
        if user_id not in self.consents:
            return False
        return self.consents[user_id].consents.get(consent_type, False)

    def require_consent(self, consent_type: ConsentType):
        """Decorator to require consent before processing."""
        def decorator(func):
            async def wrapper(user_id: str, *args, **kwargs):
                if not self.check_consent(user_id, consent_type):
                    raise PermissionError(
                        f"User {user_id} has not consented to {consent_type.value}"
                    )
                return await func(user_id, *args, **kwargs)
            return wrapper
        return decorator

# Usage
consent_manager = ConsentManager()

@consent_manager.require_consent(ConsentType.LLM_PROCESSING)
async def process_with_llm(user_id: str, input_text: str):
    return await chain.ainvoke({"input": input_text})

Step 5: Audit Logging

import json
from datetime import datetime
from typing import Any

class AuditLogger:
    """Audit log for data access and processing."""

    def __init__(self, log_file: str = "audit.jsonl"):
        self.log_file = log_file

    def log(
        self,
        action: str,
        user_id: str,
        resource: str,
        details: dict = None,
        outcome: str = "success"
    ) -> None:
        """Log an audit event."""
        event = {
            "timestamp": datetime.now().isoformat(),
            "action": action,
            "user_id_hash": hashlib.sha256(user_id.encode()).hexdigest(),
            "resource": resource,
            "outcome": outcome,
            "details": details or {}
        }

        with open(self.log_file, "a") as f:
            f.write(json.dumps(event) + "\n")

    def log_llm_call(
        self,
        user_id: str,
        model: str,
        prompt_tokens: int,
        has_pii: bool
    ) -> None:
        """Log LLM API call."""
        self.log(
            action="llm_call",
            user_id=user_id,
            resource=f"model/{model}",
            details={
                "prompt_tokens": prompt_tokens,
                "pii_detected": has_pii
            }
        )

# Callback for automatic audit logging
class AuditCallback(BaseCallbackHandler):
    def __init__(self, audit_logger: AuditLogger, user_id: str):
        self.audit_logger = audit_logger
        self.user_id = user_id

    def on_llm_end(self, response, **kwargs) -> None:
        usage = response.llm_output.get("token_usage", {}) if response.llm_output else {}
        self.audit_logger.log_llm_call(
            user_id=self.user_id,
            model=response.llm_output.get("model_name", "unknown") if response.llm_output else "unknown",
            prompt_tokens=usage.get("prompt_tokens", 0),
            has_pii=False  # Set based on detection
        )

Data Handling Checklist

  • PII detection and masking implemented
  • Data retention policies defined
  • Consent management in place
  • Audit logging enabled
  • Right to erasure (GDPR) supported
  • Data minimization practiced
  • Encryption at rest and in transit

Resources

Next Steps

Use langchain-security-basics for additional security measures.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.