jeremylongshore

langchain-cost-tuning

@jeremylongshore/langchain-cost-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize LangChain API costs and token usage. Use when reducing LLM API expenses, implementing cost controls, or optimizing token consumption in production. Trigger with phrases like "langchain cost", "langchain tokens", "reduce langchain cost", "langchain billing", "langchain budget".

Installation

$skills install @jeremylongshore/langchain-cost-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/langchain-pack/skills/langchain-cost-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/langchain-cost-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: langchain-cost-tuning description: | Optimize LangChain API costs and token usage. Use when reducing LLM API expenses, implementing cost controls, or optimizing token consumption in production. Trigger with phrases like "langchain cost", "langchain tokens", "reduce langchain cost", "langchain billing", "langchain budget". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

LangChain Cost Tuning

Overview

Strategies for reducing LLM API costs while maintaining quality in LangChain applications.

Prerequisites

  • LangChain application in production
  • Access to API usage dashboard
  • Understanding of token pricing

Instructions

Step 1: Understand Token Pricing

# Current approximate pricing (check provider for current rates)
PRICING = {
    "openai": {
        "gpt-4o": {"input": 0.005, "output": 0.015},      # per 1K tokens
        "gpt-4o-mini": {"input": 0.00015, "output": 0.0006},
        "gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},
    },
    "anthropic": {
        "claude-3-5-sonnet": {"input": 0.003, "output": 0.015},
        "claude-3-haiku": {"input": 0.00025, "output": 0.00125},
    },
    "google": {
        "gemini-1.5-pro": {"input": 0.00125, "output": 0.005},
        "gemini-1.5-flash": {"input": 0.000075, "output": 0.0003},
    }
}

def estimate_cost(
    input_tokens: int,
    output_tokens: int,
    model: str = "gpt-4o-mini"
) -> float:
    """Estimate API cost for a request."""
    provider, model_name = model.split("/") if "/" in model else ("openai", model)
    rates = PRICING.get(provider, {}).get(model_name, {"input": 0.001, "output": 0.002})
    return (input_tokens / 1000 * rates["input"]) + (output_tokens / 1000 * rates["output"])

Step 2: Implement Token Counting

import tiktoken
from langchain_core.callbacks import BaseCallbackHandler

class CostTrackingCallback(BaseCallbackHandler):
    """Track token usage and costs."""

    def __init__(self, model: str = "gpt-4o-mini"):
        self.model = model
        self.total_input_tokens = 0
        self.total_output_tokens = 0
        self.requests = 0

    def on_llm_end(self, response, **kwargs) -> None:
        """Track tokens from LLM response."""
        if response.llm_output and "token_usage" in response.llm_output:
            usage = response.llm_output["token_usage"]
            self.total_input_tokens += usage.get("prompt_tokens", 0)
            self.total_output_tokens += usage.get("completion_tokens", 0)
            self.requests += 1

    @property
    def total_cost(self) -> float:
        return estimate_cost(
            self.total_input_tokens,
            self.total_output_tokens,
            self.model
        )

    def report(self) -> dict:
        return {
            "requests": self.requests,
            "input_tokens": self.total_input_tokens,
            "output_tokens": self.total_output_tokens,
            "total_tokens": self.total_input_tokens + self.total_output_tokens,
            "estimated_cost": f"${self.total_cost:.4f}"
        }

# Usage
tracker = CostTrackingCallback()
llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[tracker])

# After operations
print(tracker.report())

Step 3: Optimize Prompt Length

import tiktoken

def optimize_prompt(
    text: str,
    max_tokens: int = 2000,
    model: str = "gpt-4o-mini"
) -> str:
    """Truncate text to fit within token budget."""
    encoding = tiktoken.encoding_for_model(model)
    tokens = encoding.encode(text)

    if len(tokens) <= max_tokens:
        return text

    # Truncate and add indicator
    truncated = encoding.decode(tokens[:max_tokens - 10])
    return truncated + "... [truncated]"

def summarize_context(long_text: str, llm) -> str:
    """Summarize long context to reduce tokens."""
    if count_tokens(long_text) < 2000:
        return long_text

    summary_prompt = ChatPromptTemplate.from_template(
        "Summarize this text in 500 words or less, preserving key facts:\n\n{text}"
    )
    chain = summary_prompt | llm | StrOutputParser()
    return chain.invoke({"text": long_text})

Step 4: Model Tiering Strategy

from langchain_openai import ChatOpenAI
from langchain_core.runnables import RunnableBranch

# Define model tiers
llm_cheap = ChatOpenAI(model="gpt-4o-mini", temperature=0)    # $0.15/1M tokens
llm_medium = ChatOpenAI(model="gpt-4o", temperature=0)         # $5/1M tokens
llm_powerful = ChatOpenAI(model="o1", temperature=0)           # $15/1M tokens

def select_model(input_data: dict) -> str:
    """Route to appropriate model based on task."""
    task_type = input_data.get("task_type", "simple")

    if task_type in ["chat", "faq", "simple"]:
        return "cheap"
    elif task_type in ["analysis", "summary", "medium"]:
        return "medium"
    else:
        return "powerful"

router = RunnableBranch(
    (lambda x: select_model(x) == "cheap", prompt | llm_cheap),
    (lambda x: select_model(x) == "medium", prompt | llm_medium),
    prompt | llm_powerful
)

# Simple chat: ~$0.0001 per request
# Complex analysis: ~$0.01 per request
# Cost reduction: 100x for simple tasks

Step 5: Implement Caching

from langchain_core.globals import set_llm_cache
from langchain_community.cache import RedisSemanticCache
from langchain_openai import OpenAIEmbeddings

# Semantic caching - finds similar queries
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
set_llm_cache(RedisSemanticCache(
    redis_url="redis://localhost:6379",
    embedding=embeddings,
    score_threshold=0.95  # High similarity required
))

# Example savings:
# - "What is Python?" and "What's Python?" -> Same cached response
# - 100 similar queries -> 1 API call + 99 cache hits
# - Potential 99% cost reduction for repetitive queries

Step 6: Set Budget Limits

class BudgetLimitCallback(BaseCallbackHandler):
    """Enforce budget limits."""

    def __init__(self, daily_budget: float = 10.0, model: str = "gpt-4o-mini"):
        self.daily_budget = daily_budget
        self.model = model
        self.daily_spend = 0.0
        self.last_reset = datetime.now().date()

    def on_llm_start(self, serialized, prompts, **kwargs) -> None:
        """Check budget before request."""
        today = datetime.now().date()
        if today != self.last_reset:
            self.daily_spend = 0.0
            self.last_reset = today

        if self.daily_spend >= self.daily_budget:
            raise RuntimeError(f"Daily budget of ${self.daily_budget} exceeded")

    def on_llm_end(self, response, **kwargs) -> None:
        """Update spend after request."""
        if response.llm_output and "token_usage" in response.llm_output:
            usage = response.llm_output["token_usage"]
            cost = estimate_cost(
                usage.get("prompt_tokens", 0),
                usage.get("completion_tokens", 0),
                self.model
            )
            self.daily_spend += cost

# Usage
budget_callback = BudgetLimitCallback(daily_budget=50.0)
llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[budget_callback])

Cost Optimization Summary

StrategyPotential SavingsImplementation Effort
Model tiering50-100xMedium
Response caching50-99%Low
Prompt optimization10-50%Low
Semantic caching30-70%Medium
Budget limitsRisk mitigationLow

Output

  • Token counting and cost tracking
  • Prompt optimization utilities
  • Model routing for cost efficiency
  • Budget enforcement callbacks

Resources

Next Steps

Use langchain-reference-architecture for scalable production patterns.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.