Optimize LangChain API costs and token usage. Use when reducing LLM API expenses, implementing cost controls, or optimizing token consumption in production. Trigger with phrases like "langchain cost", "langchain tokens", "reduce langchain cost", "langchain billing", "langchain budget".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: langchain-cost-tuning description: | Optimize LangChain API costs and token usage. Use when reducing LLM API expenses, implementing cost controls, or optimizing token consumption in production. Trigger with phrases like "langchain cost", "langchain tokens", "reduce langchain cost", "langchain billing", "langchain budget". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
LangChain Cost Tuning
Overview
Strategies for reducing LLM API costs while maintaining quality in LangChain applications.
Prerequisites
- LangChain application in production
- Access to API usage dashboard
- Understanding of token pricing
Instructions
Step 1: Understand Token Pricing
# Current approximate pricing (check provider for current rates)
PRICING = {
"openai": {
"gpt-4o": {"input": 0.005, "output": 0.015}, # per 1K tokens
"gpt-4o-mini": {"input": 0.00015, "output": 0.0006},
"gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},
},
"anthropic": {
"claude-3-5-sonnet": {"input": 0.003, "output": 0.015},
"claude-3-haiku": {"input": 0.00025, "output": 0.00125},
},
"google": {
"gemini-1.5-pro": {"input": 0.00125, "output": 0.005},
"gemini-1.5-flash": {"input": 0.000075, "output": 0.0003},
}
}
def estimate_cost(
input_tokens: int,
output_tokens: int,
model: str = "gpt-4o-mini"
) -> float:
"""Estimate API cost for a request."""
provider, model_name = model.split("/") if "/" in model else ("openai", model)
rates = PRICING.get(provider, {}).get(model_name, {"input": 0.001, "output": 0.002})
return (input_tokens / 1000 * rates["input"]) + (output_tokens / 1000 * rates["output"])
Step 2: Implement Token Counting
import tiktoken
from langchain_core.callbacks import BaseCallbackHandler
class CostTrackingCallback(BaseCallbackHandler):
"""Track token usage and costs."""
def __init__(self, model: str = "gpt-4o-mini"):
self.model = model
self.total_input_tokens = 0
self.total_output_tokens = 0
self.requests = 0
def on_llm_end(self, response, **kwargs) -> None:
"""Track tokens from LLM response."""
if response.llm_output and "token_usage" in response.llm_output:
usage = response.llm_output["token_usage"]
self.total_input_tokens += usage.get("prompt_tokens", 0)
self.total_output_tokens += usage.get("completion_tokens", 0)
self.requests += 1
@property
def total_cost(self) -> float:
return estimate_cost(
self.total_input_tokens,
self.total_output_tokens,
self.model
)
def report(self) -> dict:
return {
"requests": self.requests,
"input_tokens": self.total_input_tokens,
"output_tokens": self.total_output_tokens,
"total_tokens": self.total_input_tokens + self.total_output_tokens,
"estimated_cost": f"${self.total_cost:.4f}"
}
# Usage
tracker = CostTrackingCallback()
llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[tracker])
# After operations
print(tracker.report())
Step 3: Optimize Prompt Length
import tiktoken
def optimize_prompt(
text: str,
max_tokens: int = 2000,
model: str = "gpt-4o-mini"
) -> str:
"""Truncate text to fit within token budget."""
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(text)
if len(tokens) <= max_tokens:
return text
# Truncate and add indicator
truncated = encoding.decode(tokens[:max_tokens - 10])
return truncated + "... [truncated]"
def summarize_context(long_text: str, llm) -> str:
"""Summarize long context to reduce tokens."""
if count_tokens(long_text) < 2000:
return long_text
summary_prompt = ChatPromptTemplate.from_template(
"Summarize this text in 500 words or less, preserving key facts:\n\n{text}"
)
chain = summary_prompt | llm | StrOutputParser()
return chain.invoke({"text": long_text})
Step 4: Model Tiering Strategy
from langchain_openai import ChatOpenAI
from langchain_core.runnables import RunnableBranch
# Define model tiers
llm_cheap = ChatOpenAI(model="gpt-4o-mini", temperature=0) # $0.15/1M tokens
llm_medium = ChatOpenAI(model="gpt-4o", temperature=0) # $5/1M tokens
llm_powerful = ChatOpenAI(model="o1", temperature=0) # $15/1M tokens
def select_model(input_data: dict) -> str:
"""Route to appropriate model based on task."""
task_type = input_data.get("task_type", "simple")
if task_type in ["chat", "faq", "simple"]:
return "cheap"
elif task_type in ["analysis", "summary", "medium"]:
return "medium"
else:
return "powerful"
router = RunnableBranch(
(lambda x: select_model(x) == "cheap", prompt | llm_cheap),
(lambda x: select_model(x) == "medium", prompt | llm_medium),
prompt | llm_powerful
)
# Simple chat: ~$0.0001 per request
# Complex analysis: ~$0.01 per request
# Cost reduction: 100x for simple tasks
Step 5: Implement Caching
from langchain_core.globals import set_llm_cache
from langchain_community.cache import RedisSemanticCache
from langchain_openai import OpenAIEmbeddings
# Semantic caching - finds similar queries
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
set_llm_cache(RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=embeddings,
score_threshold=0.95 # High similarity required
))
# Example savings:
# - "What is Python?" and "What's Python?" -> Same cached response
# - 100 similar queries -> 1 API call + 99 cache hits
# - Potential 99% cost reduction for repetitive queries
Step 6: Set Budget Limits
class BudgetLimitCallback(BaseCallbackHandler):
"""Enforce budget limits."""
def __init__(self, daily_budget: float = 10.0, model: str = "gpt-4o-mini"):
self.daily_budget = daily_budget
self.model = model
self.daily_spend = 0.0
self.last_reset = datetime.now().date()
def on_llm_start(self, serialized, prompts, **kwargs) -> None:
"""Check budget before request."""
today = datetime.now().date()
if today != self.last_reset:
self.daily_spend = 0.0
self.last_reset = today
if self.daily_spend >= self.daily_budget:
raise RuntimeError(f"Daily budget of ${self.daily_budget} exceeded")
def on_llm_end(self, response, **kwargs) -> None:
"""Update spend after request."""
if response.llm_output and "token_usage" in response.llm_output:
usage = response.llm_output["token_usage"]
cost = estimate_cost(
usage.get("prompt_tokens", 0),
usage.get("completion_tokens", 0),
self.model
)
self.daily_spend += cost
# Usage
budget_callback = BudgetLimitCallback(daily_budget=50.0)
llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[budget_callback])
Cost Optimization Summary
| Strategy | Potential Savings | Implementation Effort |
|---|---|---|
| Model tiering | 50-100x | Medium |
| Response caching | 50-99% | Low |
| Prompt optimization | 10-50% | Low |
| Semantic caching | 30-70% | Medium |
| Budget limits | Risk mitigation | Low |
Output
- Token counting and cost tracking
- Prompt optimization utilities
- Model routing for cost efficiency
- Budget enforcement callbacks
Resources
Next Steps
Use langchain-reference-architecture for scalable production patterns.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
