Build LangChain agents with tools for autonomous task execution. Use when creating AI agents, implementing tool calling, or building autonomous workflows with decision-making. Trigger with phrases like "langchain agents", "langchain tools", "tool calling", "langchain autonomous", "create agent", "function calling".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: langchain-core-workflow-b description: | Build LangChain agents with tools for autonomous task execution. Use when creating AI agents, implementing tool calling, or building autonomous workflows with decision-making. Trigger with phrases like "langchain agents", "langchain tools", "tool calling", "langchain autonomous", "create agent", "function calling". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
LangChain Core Workflow B: Agents & Tools
Overview
Build autonomous agents that can use tools, make decisions, and execute multi-step tasks using LangChain's agent framework.
Prerequisites
- Completed
langchain-core-workflow-a(chains) - Understanding of function/tool calling concepts
- Familiarity with async programming
Instructions
Step 1: Define Tools
from langchain_core.tools import tool
from pydantic import BaseModel, Field
class SearchInput(BaseModel):
query: str = Field(description="The search query")
@tool(args_schema=SearchInput)
def search_web(query: str) -> str:
"""Search the web for information."""
# Implement actual search logic
return f"Search results for: {query}"
@tool
def calculate(expression: str) -> str:
"""Evaluate a mathematical expression."""
try:
result = eval(expression) # Use safer alternative in production
return str(result)
except Exception as e:
return f"Error: {e}"
@tool
def get_current_time() -> str:
"""Get the current date and time."""
from datetime import datetime
return datetime.now().isoformat()
tools = [search_web, calculate, get_current_time]
Step 2: Create Agent with Tools
from langchain_openai import ChatOpenAI
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant with access to tools."),
MessagesPlaceholder(variable_name="chat_history", optional=True),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
max_iterations=10,
handle_parsing_errors=True
)
Step 3: Run the Agent
# Simple invocation
result = agent_executor.invoke({
"input": "What's 25 * 4 and what time is it?"
})
print(result["output"])
# With chat history
from langchain_core.messages import HumanMessage, AIMessage
history = [
HumanMessage(content="Hi, I'm Alice"),
AIMessage(content="Hello Alice! How can I help you?")
]
result = agent_executor.invoke({
"input": "What's my name?",
"chat_history": history
})
Step 4: Streaming Agent Output
async def stream_agent():
async for event in agent_executor.astream_events(
{"input": "Search for LangChain news"},
version="v2"
):
if event["event"] == "on_chat_model_stream":
print(event["data"]["chunk"].content, end="", flush=True)
elif event["event"] == "on_tool_start":
print(f"\n[Using tool: {event['name']}]")
Output
- Typed tool definitions with Pydantic schemas
- Configured agent executor with error handling
- Working agent that can reason and use tools
- Streaming output for real-time feedback
Advanced Patterns
Custom Tool with Async Support
from langchain_core.tools import StructuredTool
async def async_search(query: str) -> str:
"""Async search implementation."""
import aiohttp
async with aiohttp.ClientSession() as session:
# Implement async search
return f"Async results for: {query}"
search_tool = StructuredTool.from_function(
func=lambda q: "sync fallback",
coroutine=async_search,
name="search",
description="Search the web"
)
Agent with Memory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
message_history = ChatMessageHistory()
agent_with_memory = RunnableWithMessageHistory(
agent_executor,
lambda session_id: message_history,
input_messages_key="input",
history_messages_key="chat_history"
)
result = agent_with_memory.invoke(
{"input": "Remember, I prefer Python"},
config={"configurable": {"session_id": "user123"}}
)
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Tool Not Found | Tool name mismatch | Verify tool names in prompt |
| Max Iterations | Agent stuck in loop | Increase limit or improve prompts |
| Parse Error | Invalid tool call format | Enable handle_parsing_errors |
| Tool Error | Tool execution failed | Add try/except in tool functions |
Resources
Next Steps
Proceed to langchain-common-errors for debugging guidance.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
