Apply production-ready Juicebox SDK patterns. Use when implementing robust error handling, retry logic, or enterprise-grade Juicebox integrations. Trigger with phrases like "juicebox best practices", "juicebox patterns", "production juicebox", "juicebox SDK architecture".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: juicebox-sdk-patterns description: | Apply production-ready Juicebox SDK patterns. Use when implementing robust error handling, retry logic, or enterprise-grade Juicebox integrations. Trigger with phrases like "juicebox best practices", "juicebox patterns", "production juicebox", "juicebox SDK architecture". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(pip:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Juicebox SDK Patterns
Overview
Production-ready patterns for robust Juicebox integration including error handling, retries, and caching.
Prerequisites
- Juicebox SDK installed
- Understanding of async/await patterns
- Familiarity with dependency injection
Instructions
Step 1: Create Client Wrapper
// lib/juicebox-client.ts
import { JuiceboxClient, JuiceboxError } from '@juicebox/sdk';
export class JuiceboxService {
private client: JuiceboxClient;
private cache: Map<string, { data: any; expires: number }>;
constructor(apiKey: string) {
this.client = new JuiceboxClient({
apiKey,
timeout: 30000,
retries: 3
});
this.cache = new Map();
}
async searchPeople(query: string, options?: SearchOptions) {
const cacheKey = `search:${query}:${JSON.stringify(options)}`;
const cached = this.getFromCache(cacheKey);
if (cached) return cached;
try {
const results = await this.client.search.people({
query,
...options
});
this.setCache(cacheKey, results, 300000); // 5 min cache
return results;
} catch (error) {
if (error instanceof JuiceboxError) {
throw this.handleJuiceboxError(error);
}
throw error;
}
}
private handleJuiceboxError(error: JuiceboxError) {
switch (error.code) {
case 'RATE_LIMITED':
return new Error(`Rate limited. Retry after ${error.retryAfter}s`);
case 'INVALID_QUERY':
return new Error(`Invalid query: ${error.message}`);
default:
return error;
}
}
}
Step 2: Implement Retry Logic
// lib/retry.ts
export async function withRetry<T>(
fn: () => Promise<T>,
options: { maxRetries: number; backoff: number }
): Promise<T> {
let lastError: Error;
for (let i = 0; i < options.maxRetries; i++) {
try {
return await fn();
} catch (error) {
lastError = error as Error;
await sleep(options.backoff * Math.pow(2, i));
}
}
throw lastError!;
}
Step 3: Add Observability
// lib/instrumented-client.ts
export class InstrumentedJuiceboxService extends JuiceboxService {
async searchPeople(query: string, options?: SearchOptions) {
const start = Date.now();
const span = tracer.startSpan('juicebox.search');
try {
const results = await super.searchPeople(query, options);
span.setStatus({ code: SpanStatusCode.OK });
metrics.histogram('juicebox.search.duration', Date.now() - start);
return results;
} catch (error) {
span.setStatus({ code: SpanStatusCode.ERROR });
metrics.increment('juicebox.search.errors');
throw error;
} finally {
span.end();
}
}
}
Output
- Production-ready client wrapper
- Retry logic with exponential backoff
- Caching layer for performance
- Observability instrumentation
Error Handling
| Pattern | Use Case | Benefit |
|---|---|---|
| Circuit Breaker | Prevent cascade failures | System resilience |
| Retry with Backoff | Transient errors | Higher success rate |
| Cache-Aside | Repeated queries | Lower latency |
| Bulkhead | Resource isolation | Fault isolation |
Examples
Singleton Pattern
// Ensure single client instance
let instance: JuiceboxService | null = null;
export function getJuiceboxService(): JuiceboxService {
if (!instance) {
instance = new JuiceboxService(process.env.JUICEBOX_API_KEY!);
}
return instance;
}
Resources
Next Steps
Apply these patterns then explore juicebox-core-workflow-a for search workflows.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
