Implement Juicebox reference architecture. Use when designing system architecture, planning integrations, or implementing enterprise-grade Juicebox solutions. Trigger with phrases like "juicebox architecture", "juicebox design", "juicebox system design", "juicebox enterprise".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: juicebox-reference-architecture description: | Implement Juicebox reference architecture. Use when designing system architecture, planning integrations, or implementing enterprise-grade Juicebox solutions. Trigger with phrases like "juicebox architecture", "juicebox design", "juicebox system design", "juicebox enterprise". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Juicebox Reference Architecture
Overview
Enterprise-grade reference architecture for Juicebox-powered recruiting and people search applications.
Architecture Patterns
Pattern 1: Simple Integration
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Client │────▶│ Backend │────▶│ Juicebox │
│ (React) │ │ (Node) │ │ API │
└─────────────┘ └─────────────┘ └─────────────┘
Best for: Small applications, MVPs, single-tenant systems
Pattern 2: Cached Architecture
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Client │────▶│ Backend │────▶│ Redis │
│ (React) │ │ (Node) │ │ Cache │
└─────────────┘ └─────────────┘ └──────┬──────┘
│
┌───────▼───────┐
│ Juicebox │
│ API │
└───────────────┘
Best for: Medium applications, cost optimization
Pattern 3: Enterprise Architecture
┌─────────────────────────────────────────┐
│ Load Balancer │
└────────────────────┬────────────────────┘
│
┌────────────────────────────┼────────────────────────────┐
│ │ │
┌───────▼───────┐ ┌────────▼────────┐ ┌────────▼────────┐
│ API Server │ │ API Server │ │ API Server │
│ (Node.js) │ │ (Node.js) │ │ (Node.js) │
└───────┬───────┘ └────────┬────────┘ └────────┬────────┘
│ │ │
└────────────────────────────┼────────────────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
┌───────▼───────┐ ┌────────▼────────┐ ┌────────▼────────┐
│ Redis │ │ PostgreSQL │ │ Message │
│ (Cache) │ │ (Profiles) │ │ Queue │
└───────────────┘ └─────────────────┘ └────────┬────────┘
│
┌────────▼────────┐
│ Worker Pool │
│ (Enrichment) │
└────────┬────────┘
│
┌────────▼────────┐
│ Juicebox API │
└─────────────────┘
Best for: Large-scale applications, multi-tenant, high availability
Implementation
Core Components
1. API Gateway
// gateway/index.ts
import express from 'express';
import { createRateLimiter } from './middleware/rate-limiter';
import { authenticate } from './middleware/auth';
import { validateRequest } from './middleware/validation';
const app = express();
app.use('/api/v1/search', [
authenticate,
createRateLimiter({ windowMs: 60000, max: 100 }),
validateRequest(searchSchema),
searchController
]);
app.use('/api/v1/profiles', [
authenticate,
createRateLimiter({ windowMs: 60000, max: 200 }),
validateRequest(profileSchema),
profileController
]);
2. Service Layer
// services/people-search.service.ts
export class PeopleSearchService {
constructor(
private juicebox: JuiceboxClient,
private cache: CacheService,
private db: DatabaseService,
private queue: QueueService
) {}
async search(query: string, options: SearchOptions): Promise<SearchResult> {
// Check cache first
const cacheKey = this.getCacheKey(query, options);
const cached = await this.cache.get(cacheKey);
if (cached) return cached;
// Perform search
const results = await this.juicebox.search.people({
query,
...options
});
// Cache results
await this.cache.set(cacheKey, results, 300);
// Queue enrichment for top results
if (options.autoEnrich) {
await this.queue.add('enrich-profiles', {
profileIds: results.profiles.slice(0, 10).map(p => p.id)
});
}
return results;
}
async getProfile(id: string): Promise<Profile> {
// Check local DB first
const local = await this.db.profiles.findUnique({ where: { id } });
if (local && !this.isStale(local)) {
return local;
}
// Fetch from Juicebox
const profile = await this.juicebox.profiles.get(id);
// Store locally
await this.db.profiles.upsert({
where: { id },
create: profile,
update: profile
});
return profile;
}
}
3. Worker Pool
// workers/enrichment.worker.ts
import { Worker } from 'bullmq';
const worker = new Worker('enrich-profiles', async (job) => {
const { profileIds } = job.data;
const enriched = await juiceboxService.enrichProfiles(profileIds);
// Store enriched data
for (const profile of enriched) {
await db.profiles.upsert({
where: { id: profile.id },
create: { ...profile, enrichedAt: new Date() },
update: { ...profile, enrichedAt: new Date() }
});
}
return { enrichedCount: enriched.length };
}, { connection: redis });
4. Database Schema
-- PostgreSQL schema
CREATE TABLE profiles (
id VARCHAR(255) PRIMARY KEY,
name VARCHAR(500),
title VARCHAR(500),
company VARCHAR(500),
location VARCHAR(500),
email VARCHAR(255),
phone VARCHAR(50),
linkedin_url VARCHAR(500),
skills JSONB,
experience JSONB,
education JSONB,
raw_data JSONB,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW(),
enriched_at TIMESTAMP
);
CREATE INDEX idx_profiles_company ON profiles(company);
CREATE INDEX idx_profiles_location ON profiles(location);
CREATE INDEX idx_profiles_skills ON profiles USING GIN(skills);
Deployment Topology
# kubernetes/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: juicebox-api
spec:
replicas: 3
template:
spec:
containers:
- name: api
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: juicebox-workers
spec:
replicas: 2
template:
spec:
containers:
- name: worker
resources:
requests:
memory: "512Mi"
cpu: "500m"
Output
- Architecture diagrams
- Core service implementations
- Database schema
- Kubernetes manifests
Resources
Next Steps
After architecture setup, see juicebox-multi-env-setup for environment configuration.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
