jeremylongshore

juicebox-performance-tuning

@jeremylongshore/juicebox-performance-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Juicebox API performance. Use when improving response times, reducing latency, or optimizing Juicebox integration throughput. Trigger with phrases like "juicebox performance", "optimize juicebox", "juicebox speed", "juicebox latency".

Installation

$skills install @jeremylongshore/juicebox-performance-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/juicebox-pack/skills/juicebox-performance-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/juicebox-performance-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: juicebox-performance-tuning description: | Optimize Juicebox API performance. Use when improving response times, reducing latency, or optimizing Juicebox integration throughput. Trigger with phrases like "juicebox performance", "optimize juicebox", "juicebox speed", "juicebox latency". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Juicebox Performance Tuning

Overview

Optimize Juicebox API integration for maximum performance and minimal latency.

Prerequisites

  • Working Juicebox integration
  • Performance monitoring in place
  • Baseline metrics established

Instructions

Step 1: Implement Response Caching

// lib/juicebox-cache.ts
import { Redis } from 'ioredis';

const redis = new Redis(process.env.REDIS_URL);

interface CacheOptions {
  ttl: number; // seconds
  prefix?: string;
}

export class JuiceboxCache {
  constructor(private options: CacheOptions = { ttl: 300 }) {}

  private getKey(type: string, params: any): string {
    const hash = crypto
      .createHash('md5')
      .update(JSON.stringify(params))
      .digest('hex');
    return `${this.options.prefix || 'jb'}:${type}:${hash}`;
  }

  async get<T>(type: string, params: any): Promise<T | null> {
    const key = this.getKey(type, params);
    const cached = await redis.get(key);
    return cached ? JSON.parse(cached) : null;
  }

  async set<T>(type: string, params: any, data: T): Promise<void> {
    const key = this.getKey(type, params);
    await redis.setex(key, this.options.ttl, JSON.stringify(data));
  }

  async invalidate(type: string, params: any): Promise<void> {
    const key = this.getKey(type, params);
    await redis.del(key);
  }
}

// Usage
const cache = new JuiceboxCache({ ttl: 300 });

async function searchWithCache(query: string, options: SearchOptions) {
  const cached = await cache.get('search', { query, ...options });
  if (cached) return cached;

  const results = await client.search.people({ query, ...options });
  await cache.set('search', { query, ...options }, results);
  return results;
}

Step 2: Optimize Request Batching

// lib/batch-processor.ts
export class BatchProcessor<T, R> {
  private queue: Array<{
    item: T;
    resolve: (result: R) => void;
    reject: (error: Error) => void;
  }> = [];
  private timeout: NodeJS.Timeout | null = null;

  constructor(
    private processBatch: (items: T[]) => Promise<R[]>,
    private options: { maxSize: number; maxWait: number }
  ) {}

  async add(item: T): Promise<R> {
    return new Promise((resolve, reject) => {
      this.queue.push({ item, resolve, reject });

      if (this.queue.length >= this.options.maxSize) {
        this.flush();
      } else if (!this.timeout) {
        this.timeout = setTimeout(() => this.flush(), this.options.maxWait);
      }
    });
  }

  private async flush(): Promise<void> {
    if (this.timeout) {
      clearTimeout(this.timeout);
      this.timeout = null;
    }

    if (this.queue.length === 0) return;

    const batch = this.queue.splice(0, this.options.maxSize);
    const items = batch.map(b => b.item);

    try {
      const results = await this.processBatch(items);
      batch.forEach((b, i) => b.resolve(results[i]));
    } catch (error) {
      batch.forEach(b => b.reject(error as Error));
    }
  }
}

// Usage for profile enrichment
const enrichmentBatcher = new BatchProcessor<string, Profile>(
  async (profileIds) => {
    return client.profiles.batchGet(profileIds);
  },
  { maxSize: 50, maxWait: 100 }
);

// Automatic batching
const profile = await enrichmentBatcher.add(profileId);

Step 3: Connection Pooling

// lib/connection-pool.ts
import { JuiceboxClient } from '@juicebox/sdk';

class ClientPool {
  private clients: JuiceboxClient[] = [];
  private currentIndex = 0;

  constructor(size: number, apiKey: string) {
    for (let i = 0; i < size; i++) {
      this.clients.push(new JuiceboxClient({
        apiKey,
        keepAlive: true,
        timeout: 30000
      }));
    }
  }

  getClient(): JuiceboxClient {
    const client = this.clients[this.currentIndex];
    this.currentIndex = (this.currentIndex + 1) % this.clients.length;
    return client;
  }
}

const pool = new ClientPool(5, process.env.JUICEBOX_API_KEY!);

Step 4: Query Optimization

// lib/query-optimizer.ts
export function optimizeSearchQuery(params: SearchParams): SearchParams {
  return {
    ...params,
    // Only request needed fields
    fields: params.fields || ['id', 'name', 'title', 'company'],
    // Use reasonable page size
    limit: Math.min(params.limit || 20, 100),
    // Disable expensive features if not needed
    includeScores: params.includeScores ?? false,
    includeHighlights: params.includeHighlights ?? false
  };
}

// Pagination optimization
async function* streamResults(query: string) {
  let cursor: string | undefined;

  do {
    const results = await client.search.people({
      query,
      limit: 100,
      cursor,
      fields: ['id', 'name', 'title'] // Minimal fields for listing
    });

    for (const profile of results.profiles) {
      yield profile;
    }

    cursor = results.nextCursor;
  } while (cursor);
}

Step 5: Monitor Performance

// lib/performance-monitor.ts
import { metrics } from './metrics';

export function wrapWithMetrics<T extends (...args: any[]) => Promise<any>>(
  name: string,
  fn: T
): T {
  return (async (...args: Parameters<T>) => {
    const start = Date.now();
    try {
      const result = await fn(...args);
      metrics.histogram(`juicebox.${name}.duration`, Date.now() - start);
      metrics.increment(`juicebox.${name}.success`);
      return result;
    } catch (error) {
      metrics.increment(`juicebox.${name}.error`);
      throw error;
    }
  }) as T;
}

// Dashboard query
const performanceQuery = `
  SELECT
    date_trunc('hour', timestamp) as hour,
    avg(duration_ms) as avg_latency,
    percentile_cont(0.95) within group (order by duration_ms) as p95,
    count(*) as requests
  FROM juicebox_metrics
  WHERE timestamp > now() - interval '24 hours'
  GROUP BY 1
  ORDER BY 1
`;

Performance Benchmarks

OperationTargetOptimization
Search (cold)< 500msQuery optimization
Search (cached)< 50msRedis cache
Profile fetch< 200msBatch requests
Bulk enrichment< 2s/100Connection pool

Output

  • Response caching layer
  • Request batching system
  • Connection pool
  • Performance monitoring

Resources

Next Steps

After performance tuning, see juicebox-cost-tuning for cost optimization.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.