Set up Juicebox monitoring and observability. Use when implementing logging, metrics, tracing, or alerting for Juicebox integrations. Trigger with phrases like "juicebox monitoring", "juicebox metrics", "juicebox logging", "juicebox observability".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: juicebox-observability description: | Set up Juicebox monitoring and observability. Use when implementing logging, metrics, tracing, or alerting for Juicebox integrations. Trigger with phrases like "juicebox monitoring", "juicebox metrics", "juicebox logging", "juicebox observability". allowed-tools: Read, Write, Edit, Bash(kubectl:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Juicebox Observability
Overview
Implement comprehensive observability for Juicebox integrations including logging, metrics, tracing, and alerting.
Prerequisites
- Observability platform (DataDog, Grafana, etc.)
- Juicebox integration running
- Access to deploy monitoring agents
Three Pillars of Observability
1. Logging
2. Metrics
3. Tracing
Instructions
Step 1: Structured Logging
// lib/logger.ts
import pino from 'pino';
const logger = pino({
level: process.env.LOG_LEVEL || 'info',
formatters: {
level: (label) => ({ level: label })
},
base: {
service: 'juicebox-integration',
environment: process.env.NODE_ENV
}
});
export function createJuiceboxLogger(context: Record<string, any>) {
return logger.child({ juicebox: true, ...context });
}
// Usage
const log = createJuiceboxLogger({ operation: 'search' });
log.info({ query, options }, 'Starting search');
log.info({ resultCount: results.length, duration }, 'Search completed');
log.error({ error: err.message, code: err.code }, 'Search failed');
Step 2: Metrics Collection
// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';
const registry = new Registry();
// Request metrics
export const juiceboxRequests = new Counter({
name: 'juicebox_requests_total',
help: 'Total Juicebox API requests',
labelNames: ['operation', 'status'],
registers: [registry]
});
export const juiceboxLatency = new Histogram({
name: 'juicebox_request_duration_seconds',
help: 'Juicebox API request latency',
labelNames: ['operation'],
buckets: [0.1, 0.5, 1, 2, 5, 10],
registers: [registry]
});
export const juiceboxCacheHits = new Counter({
name: 'juicebox_cache_hits_total',
help: 'Juicebox cache hits',
labelNames: ['operation'],
registers: [registry]
});
export const juiceboxQuotaUsage = new Counter({
name: 'juicebox_quota_usage_total',
help: 'Juicebox quota usage',
labelNames: ['type'],
registers: [registry]
});
// Instrumented client wrapper
export function instrumentJuiceboxCall<T>(
operation: string,
fn: () => Promise<T>
): Promise<T> {
const end = juiceboxLatency.startTimer({ operation });
return fn()
.then(result => {
juiceboxRequests.inc({ operation, status: 'success' });
return result;
})
.catch(error => {
juiceboxRequests.inc({ operation, status: 'error' });
throw error;
})
.finally(() => {
end();
});
}
Step 3: Distributed Tracing
// lib/tracing.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
const tracer = trace.getTracer('juicebox-integration');
export async function withJuiceboxSpan<T>(
name: string,
fn: () => Promise<T>,
attributes?: Record<string, string>
): Promise<T> {
return tracer.startActiveSpan(name, async (span) => {
try {
if (attributes) {
Object.entries(attributes).forEach(([key, value]) => {
span.setAttribute(key, value);
});
}
const result = await fn();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error) {
span.setStatus({
code: SpanStatusCode.ERROR,
message: (error as Error).message
});
span.recordException(error as Error);
throw error;
} finally {
span.end();
}
});
}
// Usage
async function searchPeople(query: string): Promise<SearchResult> {
return withJuiceboxSpan(
'juicebox.search.people',
() => client.search.people({ query }),
{ 'juicebox.query': query }
);
}
Step 4: Health Checks
// routes/health.ts
import { Router } from 'express';
const router = Router();
interface HealthStatus {
status: 'healthy' | 'degraded' | 'unhealthy';
checks: Record<string, {
status: 'pass' | 'fail';
latency?: number;
message?: string;
}>;
}
router.get('/health/live', (req, res) => {
res.json({ status: 'ok' });
});
router.get('/health/ready', async (req, res) => {
const health: HealthStatus = {
status: 'healthy',
checks: {}
};
// Check Juicebox API
try {
const start = Date.now();
await juiceboxClient.auth.me();
health.checks.juicebox = {
status: 'pass',
latency: Date.now() - start
};
} catch (error) {
health.checks.juicebox = {
status: 'fail',
message: (error as Error).message
};
health.status = 'degraded';
}
// Check database
try {
const start = Date.now();
await db.$queryRaw`SELECT 1`;
health.checks.database = {
status: 'pass',
latency: Date.now() - start
};
} catch (error) {
health.checks.database = {
status: 'fail',
message: (error as Error).message
};
health.status = 'unhealthy';
}
const statusCode = health.status === 'healthy' ? 200 : 503;
res.status(statusCode).json(health);
});
export default router;
Step 5: Alerting Rules
# prometheus/alerts.yaml
groups:
- name: juicebox
rules:
- alert: JuiceboxHighErrorRate
expr: |
rate(juicebox_requests_total{status="error"}[5m])
/ rate(juicebox_requests_total[5m]) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "Juicebox error rate above 5%"
- alert: JuiceboxHighLatency
expr: |
histogram_quantile(0.95, rate(juicebox_request_duration_seconds_bucket[5m])) > 5
for: 10m
labels:
severity: warning
annotations:
summary: "Juicebox P95 latency above 5s"
- alert: JuiceboxQuotaWarning
expr: |
juicebox_quota_usage_total > 0.8 * juicebox_quota_limit
for: 1m
labels:
severity: warning
annotations:
summary: "Juicebox quota usage above 80%"
Grafana Dashboard
{
"title": "Juicebox Integration",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(juicebox_requests_total[5m])",
"legendFormat": "{{operation}} - {{status}}"
}
]
},
{
"title": "Latency P95",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(juicebox_request_duration_seconds_bucket[5m]))",
"legendFormat": "{{operation}}"
}
]
},
{
"title": "Cache Hit Rate",
"type": "stat",
"targets": [
{
"expr": "rate(juicebox_cache_hits_total[5m]) / rate(juicebox_requests_total[5m])"
}
]
}
]
}
Output
- Structured logging
- Prometheus metrics
- Distributed tracing
- Health checks
- Alerting rules
Resources
Next Steps
After observability, see juicebox-incident-runbook for incident response.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
